We implement a binary collision approximation to study solitary wave propagation in a two-dimensional double Y- shaped granular chain. The solitary wave was transmitted and reflected when it met the interface of the b...We implement a binary collision approximation to study solitary wave propagation in a two-dimensional double Y- shaped granular chain. The solitary wave was transmitted and reflected when it met the interface of the bifurcated branches of the Y-shaped granular chains. We obtain the analytic results of the ratios of the transmitted and reflected speeds to the incident speed of the solitary wave, the maximum force between the two neighbor beads in a solitary wave, and the total time taken by the pulse to pass through each branch. All of the analytic results are in good agreement with the experimental observations from Daraio et al. [Phys. Rev. E 82 036603 (2010)]. Moreover, we also discuss the delay effects on the arrival of split pulses, and predict the recombination of the split waves traveling in branches in the final stem of asymmetric systems. The prediction of pulse recombination is verified by our numerical results.展开更多
Using the Glauber model, we discuss the number of binary nucleon-nucleon collisions in heavy-ion collisions. Based on the latter, after considering the effect of energy loss of the nucleons in multiple collisions, we ...Using the Glauber model, we discuss the number of binary nucleon-nucleon collisions in heavy-ion collisions. Based on the latter, after considering the effect of energy loss of the nucleons in multiple collisions, we derive the pseudorapidity distribution of the multiplicity as a function of the impact parameter in nucleus-nucleus collisions. Using this, we analyze the experimental measurements carried out by the BRAHMS Collaboration in Au + Au collisions at √^SNN=20GeV. The results are in good agreement with the experimental observations.展开更多
Using the Glauber model, we present the formulas for calculating the numbers of participants, spectators and binary nucleon-nucleon collisions. Based on this work, we get the pseudorapidity distributions of charged pa...Using the Glauber model, we present the formulas for calculating the numbers of participants, spectators and binary nucleon-nucleon collisions. Based on this work, we get the pseudorapidity distributions of charged particles as the function of the impact parameter in nucleus-nucleus collisions. The theoretical results agree well with the experimental observations made by the BRAHMS Collaboration in Au+Au collisions at √^SNN=200 GeV in different centrality bins over the whole pseudorapidity range.展开更多
By employing the Glauber model, we give the centrality dependences of the numbers of participants and binary nucleon-nucleon collisions in nucleus-nucleus collisions. By taking into account the energy loss of the part...By employing the Glauber model, we give the centrality dependences of the numbers of participants and binary nucleon-nucleon collisions in nucleus-nucleus collisions. By taking into account the energy loss of the participants in their multiple collisions, we then present the pseudorapidity distributions of charged particles in nucleus-nucleus collisions as a function of beam energy and impact parameter. Finally, we analyze the centrality dependence of the pseudorapidity of the charged particles in Au+Au collisions at energies from √SNN=19.6 to 200 GeV. The theoretical results are in good agreement with the experimental observations of the RHIC-PHOBOS collaboration.展开更多
The stopping and scattering of fast electrons in a dense plasma relevant to inertial confinement fusion (ICF) are investigated numerically with the latest improved cross section equations. Binary and collective effe...The stopping and scattering of fast electrons in a dense plasma relevant to inertial confinement fusion (ICF) are investigated numerically with the latest improved cross section equations. Binary and collective effects are considered to determine beam transport parameters such as range, penetration depth, spreading processes as straggling and blooming versus electron energy and plasma parameters. Blooming and straggling effects, which act as consequences of scattering with statistical assumption in collisions, lead to a non-uniform, extended region of energy deposition. Finally the mean angle of deflections is calculated for different plasma energies.展开更多
This paper gives an analytic existence proof of the Schubart periodic orbit with arbitrary masses, a periodic orbit with singularities in the collinear three-body problem. A "turning point" technique is introduced t...This paper gives an analytic existence proof of the Schubart periodic orbit with arbitrary masses, a periodic orbit with singularities in the collinear three-body problem. A "turning point" technique is introduced to exclude the possibility of extra collisions and the existence of this orbit follows by a continuity argument on differential equations generated by the regularized Hamiltonian.展开更多
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 50921002)the Fundamental Research Funds for the Central Universities of China (Grant No. 2010LKWL09)
文摘We implement a binary collision approximation to study solitary wave propagation in a two-dimensional double Y- shaped granular chain. The solitary wave was transmitted and reflected when it met the interface of the bifurcated branches of the Y-shaped granular chains. We obtain the analytic results of the ratios of the transmitted and reflected speeds to the incident speed of the solitary wave, the maximum force between the two neighbor beads in a solitary wave, and the total time taken by the pulse to pass through each branch. All of the analytic results are in good agreement with the experimental observations from Daraio et al. [Phys. Rev. E 82 036603 (2010)]. Moreover, we also discuss the delay effects on the arrival of split pulses, and predict the recombination of the split waves traveling in branches in the final stem of asymmetric systems. The prediction of pulse recombination is verified by our numerical results.
文摘Using the Glauber model, we discuss the number of binary nucleon-nucleon collisions in heavy-ion collisions. Based on the latter, after considering the effect of energy loss of the nucleons in multiple collisions, we derive the pseudorapidity distribution of the multiplicity as a function of the impact parameter in nucleus-nucleus collisions. Using this, we analyze the experimental measurements carried out by the BRAHMS Collaboration in Au + Au collisions at √^SNN=20GeV. The results are in good agreement with the experimental observations.
基金Supported by Key Foundation of Shanghai (S30501)
文摘Using the Glauber model, we present the formulas for calculating the numbers of participants, spectators and binary nucleon-nucleon collisions. Based on this work, we get the pseudorapidity distributions of charged particles as the function of the impact parameter in nucleus-nucleus collisions. The theoretical results agree well with the experimental observations made by the BRAHMS Collaboration in Au+Au collisions at √^SNN=200 GeV in different centrality bins over the whole pseudorapidity range.
基金Supported by Key Foundation of Shanghai (S30501)
文摘By employing the Glauber model, we give the centrality dependences of the numbers of participants and binary nucleon-nucleon collisions in nucleus-nucleus collisions. By taking into account the energy loss of the participants in their multiple collisions, we then present the pseudorapidity distributions of charged particles in nucleus-nucleus collisions as a function of beam energy and impact parameter. Finally, we analyze the centrality dependence of the pseudorapidity of the charged particles in Au+Au collisions at energies from √SNN=19.6 to 200 GeV. The theoretical results are in good agreement with the experimental observations of the RHIC-PHOBOS collaboration.
文摘The stopping and scattering of fast electrons in a dense plasma relevant to inertial confinement fusion (ICF) are investigated numerically with the latest improved cross section equations. Binary and collective effects are considered to determine beam transport parameters such as range, penetration depth, spreading processes as straggling and blooming versus electron energy and plasma parameters. Blooming and straggling effects, which act as consequences of scattering with statistical assumption in collisions, lead to a non-uniform, extended region of energy deposition. Finally the mean angle of deflections is calculated for different plasma energies.
文摘This paper gives an analytic existence proof of the Schubart periodic orbit with arbitrary masses, a periodic orbit with singularities in the collinear three-body problem. A "turning point" technique is introduced to exclude the possibility of extra collisions and the existence of this orbit follows by a continuity argument on differential equations generated by the regularized Hamiltonian.