Expression detection plays a vital role to determine the patient’s condition in healthcare systems.It helps the monitoring teams to respond swiftly in case of emergency.Due to the lack of suitable methods,results are...Expression detection plays a vital role to determine the patient’s condition in healthcare systems.It helps the monitoring teams to respond swiftly in case of emergency.Due to the lack of suitable methods,results are often compromised in an unconstrained environment because of pose,scale,occlusion and illumination variations in the image of the face of the patient.A novel patch-based multiple local binary patterns(LBP)feature extraction technique is proposed for analyzing human behavior using facial expression recognition.It consists of three-patch[TPLBP]and four-patch LBPs[FPLBP]based feature engineering respectively.Image representation is encoded from local patch statistics using these descriptors.TPLBP and FPLBP capture information that is encoded to find likenesses between adjacent patches of pixels by using short bit strings contrary to pixel-based methods.Coded images are transformed into the frequency domain using a discrete cosine transform(DCT).Most discriminant features extracted from coded DCT images are combined to generate a feature vector.Support vector machine(SVM),k-nearest neighbor(KNN),and Naïve Bayes(NB)are used for the classification of facial expressions using selected features.Extensive experimentation is performed to analyze human behavior by considering standard extended Cohn Kanade(CK+)and Oulu–CASIA datasets.Results demonstrate that the proposed methodology outperforms the other techniques used for comparison.展开更多
A new algorithm taking the spatial context of local features into account by utilizing contextualized histograms was proposed to recognize facial expression. The contextualized histograms were extracted fromtwo widely...A new algorithm taking the spatial context of local features into account by utilizing contextualized histograms was proposed to recognize facial expression. The contextualized histograms were extracted fromtwo widely used descriptors—the local binary pattern( LBP) and weber local descriptor( WLD). The LBP and WLD feature histograms were extracted separately fromeach facial image,and contextualized histogram was generated as feature vectors to feed the classifier. In addition,the human face was divided into sub-blocks and each sub-block was assigned different weights by their different contributions to the intensity of facial expressions to improve the recognition rate. With the support vector machine(SVM) as classifier,the experimental results on the 2D texture images fromthe 3D-BU FE dataset indicated that contextualized histograms improved facial expression recognition performance when local features were employed.展开更多
The extraction and description of image features are very important for visual simultaneous localization and mapping(V-SLAM).A rotated boosted efficient binary local image descriptor(BEBLID)SLAM(RB-SLAM)algorithm base...The extraction and description of image features are very important for visual simultaneous localization and mapping(V-SLAM).A rotated boosted efficient binary local image descriptor(BEBLID)SLAM(RB-SLAM)algorithm based on improved oriented fast and rotated brief(ORB)feature description is proposed in this paper,which can solve the problems of low localization accuracy and time efficiency of the current ORB-SLAM3 algorithm.Firstly,it uses the BEBLID to replace the feature point description algorithm of the original ORB to enhance the expressiveness and description efficiency of the image.Secondly,it adds rotational invariance to the BEBLID using the orientation information of the feature points.It also selects the rotationally stable bits in the BEBLID to further enhance the rotational invariance of the BEBLID.Finally,it retrains the binary visual dictionary based on the BEBLID to reduce the cumulative error of V-SLAM and improve the loading speed of the visual dictionary.Experiments show that the dictionary loading efficiency is improved by more than 10 times.The RB-SLAM algorithm improves the trajectory accuracy by 24.75%on the TUM dataset and 26.25%on the EuRoC dataset compared to the ORB-SLAM3 algorithm.展开更多
基金supported in part by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP2020-2016-0-00312)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation)and in part by the Faculty Research Fund of Sejong University in 2019.
文摘Expression detection plays a vital role to determine the patient’s condition in healthcare systems.It helps the monitoring teams to respond swiftly in case of emergency.Due to the lack of suitable methods,results are often compromised in an unconstrained environment because of pose,scale,occlusion and illumination variations in the image of the face of the patient.A novel patch-based multiple local binary patterns(LBP)feature extraction technique is proposed for analyzing human behavior using facial expression recognition.It consists of three-patch[TPLBP]and four-patch LBPs[FPLBP]based feature engineering respectively.Image representation is encoded from local patch statistics using these descriptors.TPLBP and FPLBP capture information that is encoded to find likenesses between adjacent patches of pixels by using short bit strings contrary to pixel-based methods.Coded images are transformed into the frequency domain using a discrete cosine transform(DCT).Most discriminant features extracted from coded DCT images are combined to generate a feature vector.Support vector machine(SVM),k-nearest neighbor(KNN),and Naïve Bayes(NB)are used for the classification of facial expressions using selected features.Extensive experimentation is performed to analyze human behavior by considering standard extended Cohn Kanade(CK+)and Oulu–CASIA datasets.Results demonstrate that the proposed methodology outperforms the other techniques used for comparison.
基金Supported by the National Natural Science Foundation of China(60772066)
文摘A new algorithm taking the spatial context of local features into account by utilizing contextualized histograms was proposed to recognize facial expression. The contextualized histograms were extracted fromtwo widely used descriptors—the local binary pattern( LBP) and weber local descriptor( WLD). The LBP and WLD feature histograms were extracted separately fromeach facial image,and contextualized histogram was generated as feature vectors to feed the classifier. In addition,the human face was divided into sub-blocks and each sub-block was assigned different weights by their different contributions to the intensity of facial expressions to improve the recognition rate. With the support vector machine(SVM) as classifier,the experimental results on the 2D texture images fromthe 3D-BU FE dataset indicated that contextualized histograms improved facial expression recognition performance when local features were employed.
文摘The extraction and description of image features are very important for visual simultaneous localization and mapping(V-SLAM).A rotated boosted efficient binary local image descriptor(BEBLID)SLAM(RB-SLAM)algorithm based on improved oriented fast and rotated brief(ORB)feature description is proposed in this paper,which can solve the problems of low localization accuracy and time efficiency of the current ORB-SLAM3 algorithm.Firstly,it uses the BEBLID to replace the feature point description algorithm of the original ORB to enhance the expressiveness and description efficiency of the image.Secondly,it adds rotational invariance to the BEBLID using the orientation information of the feature points.It also selects the rotationally stable bits in the BEBLID to further enhance the rotational invariance of the BEBLID.Finally,it retrains the binary visual dictionary based on the BEBLID to reduce the cumulative error of V-SLAM and improve the loading speed of the visual dictionary.Experiments show that the dictionary loading efficiency is improved by more than 10 times.The RB-SLAM algorithm improves the trajectory accuracy by 24.75%on the TUM dataset and 26.25%on the EuRoC dataset compared to the ORB-SLAM3 algorithm.