期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A Machine Learning Approach for Expression Detection in Healthcare Monitoring Systems 被引量:1
1
作者 Muhammad Kashif Ayyaz Hussain +6 位作者 Asim Munir Abdul Basit Siddiqui AaqifAfzaal Abbasi Muhammad Aakif Arif Jamal Malik Fayez Eid Alazemi Oh-Young Song 《Computers, Materials & Continua》 SCIE EI 2021年第5期2123-2139,共17页
Expression detection plays a vital role to determine the patient’s condition in healthcare systems.It helps the monitoring teams to respond swiftly in case of emergency.Due to the lack of suitable methods,results are... Expression detection plays a vital role to determine the patient’s condition in healthcare systems.It helps the monitoring teams to respond swiftly in case of emergency.Due to the lack of suitable methods,results are often compromised in an unconstrained environment because of pose,scale,occlusion and illumination variations in the image of the face of the patient.A novel patch-based multiple local binary patterns(LBP)feature extraction technique is proposed for analyzing human behavior using facial expression recognition.It consists of three-patch[TPLBP]and four-patch LBPs[FPLBP]based feature engineering respectively.Image representation is encoded from local patch statistics using these descriptors.TPLBP and FPLBP capture information that is encoded to find likenesses between adjacent patches of pixels by using short bit strings contrary to pixel-based methods.Coded images are transformed into the frequency domain using a discrete cosine transform(DCT).Most discriminant features extracted from coded DCT images are combined to generate a feature vector.Support vector machine(SVM),k-nearest neighbor(KNN),and Naïve Bayes(NB)are used for the classification of facial expressions using selected features.Extensive experimentation is performed to analyze human behavior by considering standard extended Cohn Kanade(CK+)and Oulu–CASIA datasets.Results demonstrate that the proposed methodology outperforms the other techniques used for comparison. 展开更多
关键词 Detection EXPRESSIONS GESTURES ANALYTICS PAIN patch-based local binary descriptor discrete cosine transform healthcare
下载PDF
Facial expression recognition with contextualized histograms
2
作者 岳雷 沈庭芝 +2 位作者 杜部致 张超 赵三元 《Journal of Beijing Institute of Technology》 EI CAS 2015年第3期392-397,共6页
A new algorithm taking the spatial context of local features into account by utilizing contextualized histograms was proposed to recognize facial expression. The contextualized histograms were extracted fromtwo widely... A new algorithm taking the spatial context of local features into account by utilizing contextualized histograms was proposed to recognize facial expression. The contextualized histograms were extracted fromtwo widely used descriptors—the local binary pattern( LBP) and weber local descriptor( WLD). The LBP and WLD feature histograms were extracted separately fromeach facial image,and contextualized histogram was generated as feature vectors to feed the classifier. In addition,the human face was divided into sub-blocks and each sub-block was assigned different weights by their different contributions to the intensity of facial expressions to improve the recognition rate. With the support vector machine(SVM) as classifier,the experimental results on the 2D texture images fromthe 3D-BU FE dataset indicated that contextualized histograms improved facial expression recognition performance when local features were employed. 展开更多
关键词 facial expression recognition local binary pattern weber local descriptor spatial context contextualized histogram
下载PDF
RB-SLAM:visual SLAM based on rotated BEBLID feature point description
3
作者 Fan Xinyue Wu Kai Chen Shuai 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2023年第3期1-13,共13页
The extraction and description of image features are very important for visual simultaneous localization and mapping(V-SLAM).A rotated boosted efficient binary local image descriptor(BEBLID)SLAM(RB-SLAM)algorithm base... The extraction and description of image features are very important for visual simultaneous localization and mapping(V-SLAM).A rotated boosted efficient binary local image descriptor(BEBLID)SLAM(RB-SLAM)algorithm based on improved oriented fast and rotated brief(ORB)feature description is proposed in this paper,which can solve the problems of low localization accuracy and time efficiency of the current ORB-SLAM3 algorithm.Firstly,it uses the BEBLID to replace the feature point description algorithm of the original ORB to enhance the expressiveness and description efficiency of the image.Secondly,it adds rotational invariance to the BEBLID using the orientation information of the feature points.It also selects the rotationally stable bits in the BEBLID to further enhance the rotational invariance of the BEBLID.Finally,it retrains the binary visual dictionary based on the BEBLID to reduce the cumulative error of V-SLAM and improve the loading speed of the visual dictionary.Experiments show that the dictionary loading efficiency is improved by more than 10 times.The RB-SLAM algorithm improves the trajectory accuracy by 24.75%on the TUM dataset and 26.25%on the EuRoC dataset compared to the ORB-SLAM3 algorithm. 展开更多
关键词 visual simultaneous localization and mapping(V-SLAM) oriented fast and rotated brief(ORB) feature extraction boosted efficient binary local image descriptor(BEBLID) rotational invariance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部