Global warming and climate change are two key probing issues in the present context.The electricity sector and transportation sector are two principle entities propelling both these issues.Emissions from these two sec...Global warming and climate change are two key probing issues in the present context.The electricity sector and transportation sector are two principle entities propelling both these issues.Emissions from these two sectors can be offset by switching to greener ways of transportation through the electric vehicle (EV) and renewable energy technologies (RET).Thus,effective scheduling of both resources holds the key to sustainable practice.This paper presents a scheduling scenario-based approach in the smart grid.Problem formulation with dual objective function including both emissions and cost is developed for conventional unit commitment with EV and RET deployment.In this work,the scheduling and commitment problem is solved using the fireworks algorithm which mimics explosion of fireworks in the sky to define search space and the distance between associated sparks to evaluate global minimum.Further,binary coded fireworks algorithm is developed for the proposed scheduling problem in the smart grid.Thereafter,possible scenarios inconventional as well as smart grid are put forward.Following that,the proposed methodology is simulated using a test system with thermal generators.展开更多
This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equil...This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equilibrium and PE Stackelberg Nash equilibrium. In order to improve the computational efficiency of the uncertain solution, several operators (binary coding distance, inversion operator, explosion operator and binary back learning operator) are applied to the basic fireworks algorithm to design the binary backward fireworks algorithm (BBFWA), which has a good performance in solving the BKP. As an illustration, a case study of the UBKP model and the P-E uncertain solution is applied to an armaments transportation problem.展开更多
文摘Global warming and climate change are two key probing issues in the present context.The electricity sector and transportation sector are two principle entities propelling both these issues.Emissions from these two sectors can be offset by switching to greener ways of transportation through the electric vehicle (EV) and renewable energy technologies (RET).Thus,effective scheduling of both resources holds the key to sustainable practice.This paper presents a scheduling scenario-based approach in the smart grid.Problem formulation with dual objective function including both emissions and cost is developed for conventional unit commitment with EV and RET deployment.In this work,the scheduling and commitment problem is solved using the fireworks algorithm which mimics explosion of fireworks in the sky to define search space and the distance between associated sparks to evaluate global minimum.Further,binary coded fireworks algorithm is developed for the proposed scheduling problem in the smart grid.Thereafter,possible scenarios inconventional as well as smart grid are put forward.Following that,the proposed methodology is simulated using a test system with thermal generators.
基金supported by the National Natural Science Foundation of China(7160118361502522)
文摘This paper aims at providing an uncertain bilevel knapsack problem (UBKP) model, which is a type of BKPs involving uncertain variables. And then an uncertain solution for the UBKP is proposed by defining PE Nash equilibrium and PE Stackelberg Nash equilibrium. In order to improve the computational efficiency of the uncertain solution, several operators (binary coding distance, inversion operator, explosion operator and binary back learning operator) are applied to the basic fireworks algorithm to design the binary backward fireworks algorithm (BBFWA), which has a good performance in solving the BKP. As an illustration, a case study of the UBKP model and the P-E uncertain solution is applied to an armaments transportation problem.