期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
GIS based Landslide Susceptibility Mapping of Tevankarai Ar Sub-watershed,Kodaikkanal,India using Binary Logistic Regression Analysis 被引量:12
1
作者 Sujatha E RAMANI Kumarvel PITCHAIMANI Victor Rajamanickam GNANAMANICKAM 《Journal of Mountain Science》 SCIE CSCD 2011年第4期505-517,共13页
Landslide susceptibility mapping is the first step in regional hazard management as it helps to understand the spatial distribution of the probability of slope failure in an area.An attempt is made to map the landslid... Landslide susceptibility mapping is the first step in regional hazard management as it helps to understand the spatial distribution of the probability of slope failure in an area.An attempt is made to map the landslide susceptibility in Tevankarai Ar subwatershed,Kodaikkanal,India using binary logistic regression analysis.Geographic Information System is used to prepare the database of the predictor variables and landslide inventory map,which is used to build the spatial model of landslide susceptibility.The model describes the relationship between the dependent variable(presence and absence of landslide) and the independent variables selected for study(predictor variables) by the best fitting function.A forward stepwise logistic regression model using maximum likelihood estimation is used in the regression analysis.An inventory of 84 landslides and cells within a buffer distance of 10m around the landslide is used as the dependent variable.Relief,slope,aspect,plan curvature,profile curvature,land use,soil,topographic wetness index,proximity to roads and proximity to lineaments are taken as independent variables.The constant and the coefficient of the predictor variable retained by the regression model are used to calculate the probability of slope failure and analyze the effect of each predictor variable on landslide occurrence in thestudy area.The model shows that the most significant parameter contributing to landslides is slope.The other significant parameters are profile curvature,soil,road,wetness index and relief.The predictive logistic regression model is validated using temporal validation data-set of known landslide locations and shows an accuracy of 85.29 %. 展开更多
关键词 Landslide Susceptibility binary logistic regression GIS Kodaikkanal INDIA
下载PDF
Residents'satisfaction of Beijing new regulations for domestic waste classification based on binary logistic regression:A case study of Daxing District
2
作者 GU Yue-qi HOU Xiao-yu +2 位作者 LI Si-tong TIAN Li ZHOU Yan-fang 《Ecological Economy》 2022年第3期190-204,共15页
On the first anniversary of the implementation of the new regulations of Beijing Municipality on the management of domestic waste,to understand residents’views on the waste classification policy,the project conducted... On the first anniversary of the implementation of the new regulations of Beijing Municipality on the management of domestic waste,to understand residents’views on the waste classification policy,the project conducted relevant investigation of the satisfaction of residents with the domestic waste classification policy in Daxing District of Beijing,China.Based on the analysis of the survey,this study uses the binary logistic regression model to explore the residents’satisfaction with the new domestic waste classification policy in Beijing and its influencing factors.The data from 398 valid questionnaires involve the demographic characteristics of residents,residents’cognition and views on Beijing municipal solid waste classification policy,and residents’satisfaction with Beijing domestic waste classification policy.The data show that the comprehensive satisfaction level of residents with the domestic waste classification policy in Beijing is quite high,up to 84.7%.Among them,the satisfaction level of residents with the details of the classification standards,the allocation of garbage cans,the publicity and supervision of the policy,incentive measures and the implementation process and effect of the policy is very high,exceeding 80%or even more than 90%.Through binary logistic regression analysis,we come to the conclusion that six factors significantly affect residents’satisfaction with Beijing municipal solid waste classification policy,such as residents’monthly income,household daily average domestic waste production,publicity of waste classification policy,supervisors’better understanding of waste classification standards,guidance of waste delivery by community classification supervisors,and convenience of waste classification process. 展开更多
关键词 domestic waste classification policy residents’satisfaction binary logistic regression influencing factors
下载PDF
Evaluation of Inference Adequacy in Cumulative Logistic Regression Models:An Empirical Validation of ISW-Ridge Relationships 被引量:3
3
作者 Cheng-Wu CHEN Hsien-Chueh Peter YANG +2 位作者 Chen-Yuan CHEN Alex Kung-Hsiung CHANG Tsung-Hao CHEN 《China Ocean Engineering》 SCIE EI 2008年第1期43-56,共14页
Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ri... Internal solitary wave propagation over a submarine ridge results in energy dissipation, in which the hydrodynamic interaction between a wave and ridge affects marine environment. This study analyzes the effects of ridge height and potential energy during wave-ridge interaction with a binary and cumulative logistic regression model. In testing the Global Null Hypothesis, all values are p 〈0.001, with three statistical methods, such as Likelihood Ratio, Score, and Wald. While comparing with two kinds of models, tests values obtained by cumulative logistic regression models are better than those by binary logistic regression models. Although this study employed cumulative logistic regression model, three probability functions p^1, p^2 and p^3, are utilized for investigating the weighted influence of factors on wave reflection. Deviance and Pearson tests are applied to cheek the goodness-of-fit of the proposed model. The analytical results demonstrated that both ridge height (X1 ) and potential energy (X2 ) significantly impact (p 〈 0. 0001 ) the amplitude-based refleeted rate; the P-values for the deviance and Pearson are all 〉 0.05 (0.2839, 0.3438, respectively). That is, the goodness-of-fit between ridge height ( X1 ) and potential energy (X2) can further predict parameters under the scenario of the best parsimonious model. Investigation of 6 predictive powers ( R2, Max-rescaled R^2, Sorners' D, Gamma, Tau-a, and c, respectively) indicate that these predictive estimates of the proposed model have better predictive ability than ridge height alone, and are very similar to the interaction of ridge height and potential energy. It can be concluded that the goodness-of-fit and prediction ability of the cumulative logistic regression model are better than that of the binary logistic regression model. 展开更多
关键词 binary logistic regression cumulative logistic regression model GOODNESS-OF-FIT internal solitary wave amplitude-based transmission rate
下载PDF
Association between people’s attitudes towards human-elephant conflict and their locational,demographic,and socio-economic characteristics in Buxa Tiger Reserve and its adjoining area,India
4
作者 Chiranjib NAD Tamal BASU-ROY 《Regional Sustainability》 2024年第1期11-25,共15页
“Human-elephant conflict(HEC)”,the alarming issue,in present day context has attracted the attention of environmentalists and policy makers.The rising conflict between human beings and wild elephants is common in Bu... “Human-elephant conflict(HEC)”,the alarming issue,in present day context has attracted the attention of environmentalists and policy makers.The rising conflict between human beings and wild elephants is common in Buxa Tiger Reserve(BTR)and its adjoining area in West Bengal State,India,making the area volatile.People’s attitudes towards elephant conservation activity are very crucial to get rid of HEC,because people’s proximity with wild elephants’habitat can trigger the occurrence of HEC.The aim of this study is to conduct an in-depth investigation about the association of people’s attitudes towards HEC with their locational,demographic,and socio-economic characteristics in BTR and its adjoining area by using Pearson’s bivariate chi-square test and binary logistic regression analysis.BTR is one of the constituent parts of Eastern Doors Elephant Reserve(EDER).We interviewed 500 respondents to understand their perceptions to HEC and investigated their locational,demographic,and socio-economic characteristics including location of village,gender,age,ethnicity,religion,caste,poverty level,education level,primary occupation,secondary occupation,household type,and source of firewood.The results indicate that respondents who are living in enclave forest villages(EFVs),peripheral forest villages(PFVs),corridor village(CVs),or forest and corridor villages(FCVs),mainly males,at the age of 18–48 years old,engaged with agriculture occupation,and living in kancha and mixed houses,have more likelihood to witness HEC.Besides,respondents who are illiterate or at primary education level are more likely to regard elephant as a main problematic animal around their villages and refuse to participate in elephant conservation activity.For the sake of a sustainable environment for both human beings and wildlife,people’s attitudes towards elephants must be friendly in a more prudent way,so that the two communities can live in harmony. 展开更多
关键词 Human-elephant conflict Elephant conservation Chi-square test statistics binary logistic regression Demographic and socioeconomic characteristics Buxa Tiger Reserve
下载PDF
Selection for high quality pepper seeds by machine vision and classifiers 被引量:7
5
作者 TU Ke-ling LI Lin-juan +2 位作者 YANG Li-ming WANG Jian-hua SUN Qun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第9期1999-2006,共8页
This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus seve... This research aimed to improve selection of pepper seeds for separating high-quality seeds from low-quality seeds. Past research has shown that seed vigor is significantly related to the seed color and size, thus several physical features were identified as candidate predictors of high seed quality. Image recognition software was used to automate recognition of seed feature quality using 400 kernels of pepper cultivar 101. In addition, binary logistic regression and a neural network were applied to determine models with high predictive value of seed germination. Single-kernel germination tests were conducted to validate the predictive value of the identified features. The best predictors of seed vigor were determined by the highest correlation observed between the physical features and the subsequent fresh weight of seedlings that germinated from the 400 seeds. Correlation analysis showed that fresh weight was significantly positively correlated with eight physical features: three color features (R, a*, brightness), width, length, projected area, and single-kernel density, and weight. In contrast, fresh weight significantly negatively correlated with the feature of hue. In analyses of two of the highest correlating single features,' germination percentage increased from 59.3 to 71.8% when a*〉3, and selection rate peaked at 57.8%. Germination percentage increased from 59.3 to 79.4%, and the selection rate reached 76.8%, when single-kernel weight 〉0.0064 g. The most effective model was based on a multilayer perceptron (MLP) neural network, consisting of 15 physical traits as variables, and a stability calculated as 99.4%. Germination percentage in a calibration set of seeds was 79.1% and the selection rate was 90.0%. These results indicated that the model was effective in predicting seed germination based on physical features and could be used as a guide for quality control in seed selection. Automated systems based on machine vision and model classifiers can contribute to reducing the costs and labor required in the selection of pepper seeds. 展开更多
关键词 pepper seed image processing machine vision seed vigor binary logistic regression multilayer perceptron neural network
下载PDF
A Time-dependent Stochastic Grassland Fire Ignition Probability Model for Hulun Buir Grassland of China 被引量:5
6
作者 GUO Zhixing FANG Weihua +1 位作者 TAN Jun SHI Xianwu 《Chinese Geographical Science》 SCIE CSCD 2013年第4期445-459,共15页
Grassland fire is one of the most important disturbance factors in the natural ecosystems.This paper focuses on the spatial distribution of long-term grassland fire patterns in the Hulun Buir Grassland located in the ... Grassland fire is one of the most important disturbance factors in the natural ecosystems.This paper focuses on the spatial distribution of long-term grassland fire patterns in the Hulun Buir Grassland located in the northeast of Inner Mongolia Autonomous Region in China.The density or ratio of ignition can reflect the relationship between grassland fire and different ignition factors.Based on the relationship between the density or ratio of ignition in different range of each ignition factor and grassland fire events,an ignition probability model was developed by using binary logistic regression function and its overall accuracy averaged up to 81.7%.Meanwhile it was found that daily relative humidity,daily temperature,elevation,vegetation type,distance to county-level road,distance to town are more important determinants of spatial distribution of fire ignitions.Using Monte Carlo method,we developed a time-dependent stochastic ignition probability model based on the distribution of inter-annual daily relative humidity and daily temperature.Through this model,it is possible to estimate the spatial patterns of ignition probability for grassland fire,which will be helpful to the quantitative evaluation of grassland fire risk and its management in the future. 展开更多
关键词 grassland fire binary logistic regression GIS spatial analysis ignition probability Monte Carlo method
下载PDF
Virtual Determination of Sex:Estimating Cut off Value of Digital Metric Traits of Foramen Magnum on Three-dimensional Computed Tomography with Receiver Operating Characteristic and Logistic Regression Analysis 被引量:2
7
作者 Harish Kumar S Agarwal Pardaman Singh Setia Suryamani Pandey 《Journal of Forensic Science and Medicine》 2021年第1期1-8,共8页
Background:Radiological imaging plays a pivotal role in forensic anthropology.As have the imaging techniques advances,so have the digital skeletal measurements inched towards precision.Secular trends of the population... Background:Radiological imaging plays a pivotal role in forensic anthropology.As have the imaging techniques advances,so have the digital skeletal measurements inched towards precision.Secular trends of the population keep on changing in modem times.Hence,finding the precise technique of bone measurement,with greater reproducibility,in modem population is always needed in making population specific biological profile.Aim and Objective:The aim of this study was to estimate the accuracy of the foramen magnum measurement,obtained by three dimensional multi-detector computed tomography using volume rendering technique with the cut off value of each variable,in sex determination of an individual.Materials and Methods:Two metric traits,an antero-posterior diameter(APD)and transverse diameter(TD),were measured digitally in an analysis of 130 radiological images having equal proportion of male and female samples.Foramen magnum index and area of foramen magnum(Area by Radinsky's[AR],Area by Teixeira5s[AT])were derived from APD and TD.Results:Descriptive statistical analysis,using unpaired t-test,showed significant higher value in males in all the variables.Using Pearson correlation analysis,maximum correlation was observed between area(AT and AR r=0.999)and between area and TD(AR r=0.955 and AT r=0.945 respectively).When used individually,TD had the highest predictive value(67.7%)for sex detennination among all the parameters followed by AT(65.4%)and AR(64.6%).Cutoff value of variables TD,AR and AT were 29.9 mm,841.80 mm2 and 849.70 mm2 respectively.Receiver operating characteristic curve predicted male and female sex with 96.2%and 89.2%accuracy respectively.The overall accuracy of the model was 92.7%.Conclusion:Measurements from 3D CT using volume rendering technique were precise,and the application of logistic regression analysis predicted the sex with more accuracy. 展开更多
关键词 binary logistic regression analysis foramen magnum sex determination three-dimensional multi-detector computed tomography volume rendering technique
原文传递
A Study on the Determinants of Location Choice in Inward Foreign Direct Investment (FDI): Focusing on the Incheon Free Economic Zone
8
作者 TaeUg Rho NanJoo (Nancy) Park 《Journal of Modern Accounting and Auditing》 2012年第4期488-502,共15页
Inward foreign direct investment (FDI) is expected to grow further by virtue of economic globalization. A thorough understanding of the locational determinants of inward FDI will be conducive to enhanced efficiency ... Inward foreign direct investment (FDI) is expected to grow further by virtue of economic globalization. A thorough understanding of the locational determinants of inward FDI will be conducive to enhanced efficiency in attracting direct and SOC-related investments from foreign entities. This study analyzes 51 cases of inward direct foreign investment made in the Incheon free economic zone (IFEZ) from 2002 to 2009 to determine the factors influencing FDI volume, the relevance of locations and the correlation between investment size and location. First, the relationship between the loeational determinants of FDI and the total investment size (total expected project cost) is analyzed. Second, the relationship between the locational determinants of FDI and the FDI is analyzed. Third, the relationship between the locational determinants of FDI and the location choice is analyzed. The results indicate the determinants that influence locations and investment size of FDI entities; whether these factors exercise influence in the zone; and the factors that have relatively significant effects. Ultimately, based on the analytical findings, a few implications for policy and practice are derived. 展开更多
关键词 ordinary least square method binary logistic regression analysis foreign direct investment (FDI) determinants of location choice Incheon free economic zone (IFEZ)
下载PDF
Households’ Willingness-to-Pay to Reduce the Use of Plastic Bags: Case Study in Viet Nam
9
作者 Nguyen Van Song Nguyen Minh Hieu +3 位作者 Vu Ngoc Huyen Nguyen Dang Que Nguyen Van Huong Bui Thi Minh Nguyet 《Journal of Environmental Protection》 2022年第3期289-298,共10页
This study used the Binary Logistic regression model to estimate the willingness to pay (WTP) to reduce the use of plastic bags in the daily life of people in the Linh Nam ward. This study notes that households with h... This study used the Binary Logistic regression model to estimate the willingness to pay (WTP) to reduce the use of plastic bags in the daily life of people in the Linh Nam ward. This study notes that households with higher incomes and higher levels of education tend to be more willing to pay. In addition, those who do not have access to information about the harmful effects of plastic bags and receive a higher proposed price often refuse to pay. 展开更多
关键词 binary logistic regression Willingness to Pay Plastic Bags
下载PDF
Screening influencing factors of blood stasis constitution in traditional Chinese medicine 被引量:5
10
作者 ZHOU Xiaoying YANG Shengwen +3 位作者 OU Jintao WANG Zhuo WANG Guangrong LUO Yue 《Digital Chinese Medicine》 2022年第2期169-177,共9页
Objective To study the influencing factors of blood stasis constitution and provide a basis for treating blood stasis-related diseases by traditional Chinese medicine(TCM) constitution identification.Methods Data were... Objective To study the influencing factors of blood stasis constitution and provide a basis for treating blood stasis-related diseases by traditional Chinese medicine(TCM) constitution identification.Methods Data were collected using the self-developed TCM constitution identification platform based on B/S model by the project team. The obtained data were divided into blood stasis constitution and normal constitution groups. The differences of the categorical type influencing factors(gender, birth mode, feeding mode within four months of birth, family history, marital status, eating habits, sleeping habits, exercise habits, emotional state, stress situation, and living environment) and the quantitative type influencing factors(sleep time, age,and mother’s age at birth) on the constitution of the two groups were analyzed. In the singlefactor analysis, the Pearson’s chi-square test was selected for the categorical variable, and the independent sample t test and Mann-Whitney U nonparametric test were selected for the quantitative variables according to whether they conformed to the positive-terrestrial distribution;the binary logistic stepwise regression method was selected for the multi-factor analysis.Results The data of 318 cases were collected from the TCM composition identification platform, and 159 cases of blood stasis constitution were used as the experimental group and 159 cases of normal constitution were used as the control group. The Pearson’s chi-square test yielded significant differences(P < 0.05) in the effects of gender, pressure situation, family history, living environment, emotional state, exercise habits, and dietary habits on blood stasis constitution. The independent samples t test yielded differences in sleep duration between the blood stasis constitution and normal constitution populations(P < 0.05), which meant sleep duration of the blood stasis constitution population was less than that of the normal constitution population. The Mann-Whitney U nonparametric test results accepted the original hypothesis that there was no difference in the distribution of age and mother’s age at birth across constitution types(P > 0.05). Binary logistic regression analysis showed that gender, family history, marital status, living environment, exercise habits, and emotional state were risk factors for blood stasis constitution(P < 0.05).Conclusion Gender, family history, living environment, emotional state, and exercise habits were significant influencing factors of blood stasis constitution. Blood stasis constitution populations can pay more attention to these influencing factors in their daily life for the prevention and reconciliation of blood stasis constitution. 展开更多
关键词 Blood stasis constitution Screening influencing factors Pearson’s chi-square test Nonparametric test binary logistic stepwise regression
下载PDF
PARAMETRIC AND NON-PARAMETRIC COMBINATION MODEL TO ENHANCE OVERALL PERFORMANCE ON DEFAULT PREDICTION 被引量:1
11
作者 LI Jun PAN Liang +1 位作者 CHEN Muzi YANG Xiaoguang 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第5期950-969,共20页
The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics h... The probability of default(PD) is the key element in the New Basel Capital Accord and the most essential factor to financial institutions' risk management.To obtain good PD estimation,practitioners and academics have put forward numerous default prediction models.However,how to use multiple models to enhance overall performance on default prediction remains untouched.In this paper,a parametric and non-parametric combination model is proposed.Firstly,binary logistic regression model(BLRM),support vector machine(SVM),and decision tree(DT) are used respectively to establish models with relatively stable and high performance.Secondly,in order to make further improvement to the overall performance,a combination model using the method of multiple discriminant analysis(MDA) is constructed.In this way,the coverage rate of the combination model is greatly improved,and the risk of miscarriage is effectively reduced.Lastly,the results of the combination model are analyzed by using the K-means clustering,and the clustering distribution is consistent with a normal distribution.The results show that the combination model based on parametric and non-parametric can effectively enhance the overall performance on default prediction. 展开更多
关键词 binary logistic regression combination model decision tree K-means clustering multiple discriminant analysis probability of default support vector machine
原文传递
Effect of time-of-day and day-of-the-week on congestion duration and breakdown:A case study at a bottleneck in Salem,NH 被引量:1
12
作者 Eric M.Laflamme Paul J.Ossenbruggen 《Journal of Traffic and Transportation Engineering(English Edition)》 2017年第1期31-40,共10页
This work uses regression models to analyze two characteristics of recurrent congestion: breakdown, the transition from freely flowing conditions to a congested state, and duration, the time between the onset and cle... This work uses regression models to analyze two characteristics of recurrent congestion: breakdown, the transition from freely flowing conditions to a congested state, and duration, the time between the onset and clearance of recurrent congestion. First, we apply a binary logistic regression model where a continuous measurement for traffic flow and a dichoto- mous categorical variable for time-of-day (AM- or PM-rush hours) is used to predict the probability of breakdown. Second, we apply an ordinary least squares regression model where categorical variables for time-of-day (AM- or PM-rush hours) and day-of-the-week (Monday-Thursday or Friday) are used to predict recurrent congestion duration. Models are fitted to data collected from a bottleneck on 1-93 in Salem, NH, over a period of 9 months. Results from the breakdown model, predict probabilities of recurrent congestion, are consistent with observed traffic and illustrate an upshift in breakdown probabilities between the AM- and PM-rush periods. Results from the regression model for congestion duration reveal the presences of significant interaction between time-of-day and day-of-the-week. Thus, the effect of time-of-day on congestion duration depends on the day-of-the-week. This work provides a simplification of recurrent congestion and recovery, very noisy processes. Simplification, conveying complex relationships with simple statistical summaries-facts, is a practical and powerful tool for traffic administrators to use in the decision-making process. 展开更多
关键词 Stochastic models Ordinary least squares regression binary logistic regression Congestion duration Breakdown
原文传递
Factors associated with crash severities in built-up areas along rural highways of Nevada:A case study of 11 towns 被引量:1
13
作者 Pramen P.Shrestha K.Joseph Shrestha 《Journal of Traffic and Transportation Engineering(English Edition)》 2017年第1期96-102,共7页
In 2014, 32,675 deaths were recorded in vehicle crashes within the United States. Out of these, 51% of the fatalities occurred in rural highways compared to 49% in urban highways. No specific crash data are available ... In 2014, 32,675 deaths were recorded in vehicle crashes within the United States. Out of these, 51% of the fatalities occurred in rural highways compared to 49% in urban highways. No specific crash data are available for the built-up areas along rural highways. Due to high fatalities in rural highways, it is important to identify the factors that cause the vehicle crashes. The main objective of this study is to determine the factors associated with se- verities of crashes that occurred in built-up areas along the rural highways of Nevada. Those factors could aid in making informed decisions while setting up speed zones in these built-up areas. Using descriptive statistics and binary logistic regression model, 337 crashes that occurred in 11 towns along the rural highways from 2002 to 2010 were analyzed. The results showed that more crashes occurred during favorable driving conditions, e.g., 87% crashes on dry roads and 70% crashes in clear weather. The binary logistic regression model showed that crashes occurred from midnight until 4 a.m. were 58.3% likely to be injury crashes rather than property damage only crashes, when other factors were kept at their mean values. Crashes on weekdays were three times more likely to be injury crashes than that occurred on weekends. When other factors were kept at their mean value, crashes involving motorcycles had an 80.2% probability of being injury crashes. Speeding was found to be 17 times more responsible for injury crashes than mechanical defects of the vehicle. As a result of this study, the Nevada Department of Transportation now can take various steps to improve public safety, including steps to reduce speeding and encourage the use of helmets for motorcycle riders. 展开更多
关键词 Speed-zone guideline Crash severity binary logistic regression model Rural highway Nevada department of transportation
原文传递
Factors affecting farmers’participation in watershed management programs in the Northeastern highlands of Ethiopia:a case study in the Teleyayen sub-watershed
14
作者 Alem-meta Assefa Agidew K.N.Singh 《Ecological Processes》 SCIE EI 2018年第1期137-151,共15页
Introduction:This study investigated factors affecting farmers’participation in watershed management programs in the Northeastern highlands of Ethiopia by taking the Teleyayen sub-watershed as a case study.Data were ... Introduction:This study investigated factors affecting farmers’participation in watershed management programs in the Northeastern highlands of Ethiopia by taking the Teleyayen sub-watershed as a case study.Data were collected from 215 farm households which were selected from the four villages using a multistage sampling procedure,involving a combination of purposive and random sampling.Data were gathered using a structured survey questionnaire,focus group discussion,and key informant interviews.Descriptive analysis,Pearson correlation analysis,and regression analysis were employed to analyze the data.Results:Findings of this study showed that farmer’s perception has a strong positive correlation(r=0.612,P=0.000)with the farmer’s decision to participate in the watershed management programs followed by government support(r=0.163,P=0.017),while the slope of the farmland and the gender of the household head have shown significant and negative associations.The binary logistic regression analysis also revealed that six independent variables were significant in explaining the factors affecting the farmers’decision to participate in watershed management programs.These variables were land redistribution,gender,agricultural labor force,extension service,farm size,and slope.Of these,land redistribution,gender,agricultural labor force,extension service,and slope of the farmland indicated a negative influence,while farm size of a household exerted a positive impact.The study also examined the role of discrete variables in explaining variations of variables in affecting the farmers’decision to participate in the programs.Thus,two variables found to be significant.These variables are the gender of the household head and land tenure security.Accordingly,the chi-square result of the variable(χ^(2)=9.052)of gender was found to be statistically significant at the 95%level of significance.Similarly,the chi-square result(X^(2)=8.792)of land tenure security was found to be statistically significant at the 95%level of significance.Conclusions:The result of the study suggests to work on raising the awareness of farmers’about the long-term benefits of the watershed programs and to design a strategy to diversify their livelihoods. 展开更多
关键词 binary logistic regression model Ethiopia Farmers’participation Watershed management
原文传递
Low Impedance Fault Identification and Classification Based on Boltzmann Machine Learning for HVDC Transmission Systems 被引量:1
15
作者 Raheel Muzzammel Ali Raza 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第2期440-449,共10页
Identification and classification of DC faults are considered as fundamentals of DC grid protection.A sudden rise of DC fault current must be identified and classified to immediately operate the corresponding interrup... Identification and classification of DC faults are considered as fundamentals of DC grid protection.A sudden rise of DC fault current must be identified and classified to immediately operate the corresponding interrupting mechanism.In this paper,the Boltzmann machine learning(BML)approach is proposed for identification and classification of DC faults using travelling waves generated at fault point in voltage source converter based high-voltage direct current(VSC-HVDC)transmission system.An unsupervised way of feature extraction is performed on the frequency spectrum of the travelling waves.Binomial class logistic regression(BCLR)classifies the HVDC transmission system into faulty and healthy states.The proposed technique reduces the time for fault identification and classification because of reduced tagged data with few characteristics.Therefore,the faults near or at converter stations are readily identified and classified.The performance of the proposed technique is assessed via simulations developed in MATLAB/Simulink and tested for pre-fault and post-fault data both at VSC1 and VSC2,respectively.Moreover,the proposed technique is supported by analyzing the root mean square error to show practicality and realization with reduced computations. 展开更多
关键词 binary class logistic regression(BCLR) Boltzmann machine learning(BML) DC grid protection fault identification and classification voltage source converter based high-voltage direct current(VSC-HVDC)transmission system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部