Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys...Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.展开更多
This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) addi...This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) additive reduces the dehydrogenation activation energy of MgH_(2) by 68 kJ/mol and lowers the required dehydrogenation temperature by 80℃.CrO_(3) added MgH_(2) was also tested as an anode in an Li ion battery,and it is possible to deliver over 90%of the total theoretical capacity(2038 mAh/g).Evidence for improved reversibility in the battery reaction is found only after the incorporation of additives with MgH_(2).In depth characterization study by X-ray diffraction(XRD)technique provides convincing evidence that the CrO_(3) additive interacts with MgH_(2) and produces Cr/MgO byproducts.Gibbs free energy analyses confirm the thermodynamic feasibility of conversion from MgH_(2)/CrO_(3) to MgO/Cr,which is well supported by the identification of Cr(0)in the powder by X ray photoelectron spectroscopy(XPS)technique.Through high resolution transmission electron microscopy(HRTEM)and energy dispersive spectroscopy(EDS)we found evidence for the presence of 5 nm size Cr nanocrystals on the surface of MgO rock salt nanoparticles.There is also convincing ground to consider that MgO rock salt accommodates Cr in the lattice.These observations support the argument that creation of active metal–metal dissolved rock salt oxide interface may be vital for improving the reactivity of MgH_(2),both for the improved storage of hydrogen and lithium.展开更多
Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele...Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.展开更多
The catalytic activity of Perovskite-type mixed oxides (LaCoO3, PrCoO3 and SmCoO3) for the reduction of cyclohexanone to cyclohexanol with 2-propanol (Meerwein-PonndorfVerley reduction) has been studied. The data have...The catalytic activity of Perovskite-type mixed oxides (LaCoO3, PrCoO3 and SmCoO3) for the reduction of cyclohexanone to cyclohexanol with 2-propanol (Meerwein-PonndorfVerley reduction) has been studied. The data have been correlated with the surface electron donor properties of these mixed oxides展开更多
The computer molecular simulation technique was applied to study the chemisorption of thiophene and tetramethylthiophene as the model sulfides on the simple oxides and complex oxides of some transition metals as the c...The computer molecular simulation technique was applied to study the chemisorption of thiophene and tetramethylthiophene as the model sulfides on the simple oxides and complex oxides of some transition metals as the catalytic materials. The study disclosed that the thiophene sulfides could enter into chemisorption with metal oxides such as VO, ZnO, NiO and Zn-Al-spinel. This interaction could lead to thiophene molecular structure deformation to be in an activated adsorption state, which could help to promote the conversion of thiophene sulfides in the course of catalytic cracking. The VO with a valence of 2 could provide relatively strong selective adsorption sites for the conversion of thiophene sulfides to apparently transform the molecular structures and electron cloud states of such heterocyclic sulfur compounds such as thiophene and tetramethylthiophene into an activated adsorption state. The effect of this interaction was more pronounced with respect to tetramethylthiophene.展开更多
Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully ex...Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully explored and pioneered.The catalytic performance,thermodynamics,kinetics,and catalytic oxidation mechanism of Pd/Cu liquid-phase catalyst catalytic oxidation of PH_(3) were thoroughly investigated.The results showed that Pd/Cu has a superior catalytic effect on the removal of PH_(3) in the gas mixture under low temperature.With CO as the carrier gas,the removal efficiency of PH_(3) could be maintained at 100%for nearly 450 min,indicating that the Pd/Cu liquid phase catalyst has good resistance to heterotoxicity.According to the thermodynamic,kinetic,and related characterization results of the PH_(3) purification process,the kinetic region of the gas–liquid reaction of PH_(3) absorption by Pd/Cu solution was an interfacial reaction.Pd was the primary catalyst and Cu was the secondary catalyst,and the adsorption of PH_(3)was a primary reaction.PH_(3) was spontaneously oxidized to H_(3)PO_(4) in the Pd/Cu catalytic system during the removal process.Pd was regenerated by O_(2) and Cu,increasing the activity and stability of the Pd/Cu catalyst in the sustain and efficient purification of PH_(3) in tail gas.展开更多
Atmospheric pollutants can deteriorate air quality and put human health at risk.There is a growing need for green,economical,and efficient technologies,among which catalytic elimination technology is the most promisin...Atmospheric pollutants can deteriorate air quality and put human health at risk.There is a growing need for green,economical,and efficient technologies,among which catalytic elimination technology is the most promising,to remove atmospheric pollutants.Two-dimensional transition metal oxides(2D TMOs)have recently become attractive catalysts due to their highly exposed active sites,excellent reactant transport properties,and extraordinary catalytic performance.This review systematically summarizes the topdown and bottom-up preparation methods of 2D TMOs and focuses on the specific applications of 2D TMOs in the catalytic elimination of atmospheric inorganic pollutants and volatile organic pollutants.The development of 2D TMOs in the catalytic elimination of atmospheric pollutants is prospected.This review is expected to provide design insights into efficient 2D TMOs to remove atmospheric pollutants.展开更多
The construction of highly active catalysts for methanol oxidation reaction(MOR)is central to direct methanol fuel cells.Tremendous progress has been made in transition metal phosphides(TMPs)based catalysts.However,TM...The construction of highly active catalysts for methanol oxidation reaction(MOR)is central to direct methanol fuel cells.Tremendous progress has been made in transition metal phosphides(TMPs)based catalysts.However,TMPs would be partially damaged and transformed into new substances(e.g.,Pt-M-P composite,where M represents a second transition metal)during Pt deposition process.This would pose a large obstacle to the cognition of the real promoting effects of TMPs in MOR.Herein,Co_(2)P co-catalysts(Pt-P/Co_(2)P@NPC,where NPC stands for N and P co-doped carbon)and Pt-Co-P composite catalysts(Pt-CoP/NPC)were controllably synthesized.Electrocatalysis tests show that the Pt-Co-P/NPC exhibits superior MOR activity as high as 1016 m A/mg_(Pt),significantly exceeding that of Pt-P/Co_(2)P@NPC(345 m A/mg_(Pt)).This result indicates that the promoting effect is ascribed primarily to the resultant Pt-Co-P composite,in sharply contrast to previous viewpoint that Co_(2)P itself improves the activity.Further mechanistic studies reveal that Pt-Co-P/NPC exhibits much stronger electron interaction and thus manifesting a remarkably weaker CO absorption than Pt-P/Co_(2)P@NPC and Pt/C.Moreover,Pt-Co-P is also more capable of producing oxygen-containing adsorbate and thus accelerating the removal of surface-bonded CO^(*),ultimately boosting the MOR performance.展开更多
Six transition metal oxides were added in ceria-modified titania using a sol-gel method for catalytic oxidation of toluene.An MnOx based catalyst was found to be the most active one,with which toluene could be decompo...Six transition metal oxides were added in ceria-modified titania using a sol-gel method for catalytic oxidation of toluene.An MnOx based catalyst was found to be the most active one,with which toluene could be decomposed completely at 200 oC.The greatest Mn/Ti and molar ratio of the mobile oxygen to the total oxygen concentration,together with a large surface area and a low reduction peak-starting temperature,would result in its best activity in toluene oxidation.展开更多
This paper reviews the recent progress in the synthesis and application of pillared transition metal oxides during the last decade, mainly concerning the synthetic methods, structures, physical properties and catalyti...This paper reviews the recent progress in the synthesis and application of pillared transition metal oxides during the last decade, mainly concerning the synthetic methods, structures, physical properties and catalytic appli-cations of the layered transition metal oxides pillared by inorganic oxides. The factors and their affecting regularity in the process of preparation, and some important results ob-tained in the catalytic application studies are summarized. Finally, a prospect on the potential new directions in this research area is also presented.展开更多
基金supported by the National High Technology Research and Development Program (863 Program,2015AA034603)the National Natural Science Foundation of China (21377008,201077007,20973017)+1 种基金Foundation on the Creative Research Team Construction Promotion Project of Beijing Municipal InstitutionsScientific Research Base Construction-Science and Technology Creation Platform National Materials Research Base Construction~~
文摘Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs.
基金supported by the projects UIDB/00481/2020 and UIDP/00481/2020-Fundação para a Ciência e a Tecnologia,DOI 10.54499/UIDB/00481/2020(https://doi.org/10.54499/UIDB/00481/2020)and DOI 10.54499/UIDP/00481/2020(https://doi.org/10.54499/UIDP/00481/2020)supported by CENTRO-01-0145-FEDER-022083-Centro Portugal Regional Operational Programme(Centro 2020),under the PORTUGAL 2020 Partnership Agreement,through the European Regional Development Fund(ERDF).This article is a result of the Innovation Pact“NGS-New Generation Storage”(C644936001-00000045)+3 种基金by“NGS”Consortium,co-financed by NextGeneration EU,through the Incentive System“Agendas para a Inovação Empresarial”(“Agendas for Business Innovation”)within the Recovery and Resilience Plan(PRR).D.P acknowledges FCT,Portugal for the financial support with reference CEECIND/04158/2017(https://doi.org/10.54499/CEECIND/04158/2017/CP1459/CT0029)funding from the SMART-ER project,funded by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement#101016888.support granted by the Recovery and Resilience Plan(PRR)and by the Next Generation EU European Funds to Universidade de Aveiro,through the Agenda for Business Innovation“NGS-Next Generation Storage”(Project no 02/C05-i01.01/2022 with the application C644936001-00000045).
文摘This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) additive reduces the dehydrogenation activation energy of MgH_(2) by 68 kJ/mol and lowers the required dehydrogenation temperature by 80℃.CrO_(3) added MgH_(2) was also tested as an anode in an Li ion battery,and it is possible to deliver over 90%of the total theoretical capacity(2038 mAh/g).Evidence for improved reversibility in the battery reaction is found only after the incorporation of additives with MgH_(2).In depth characterization study by X-ray diffraction(XRD)technique provides convincing evidence that the CrO_(3) additive interacts with MgH_(2) and produces Cr/MgO byproducts.Gibbs free energy analyses confirm the thermodynamic feasibility of conversion from MgH_(2)/CrO_(3) to MgO/Cr,which is well supported by the identification of Cr(0)in the powder by X ray photoelectron spectroscopy(XPS)technique.Through high resolution transmission electron microscopy(HRTEM)and energy dispersive spectroscopy(EDS)we found evidence for the presence of 5 nm size Cr nanocrystals on the surface of MgO rock salt nanoparticles.There is also convincing ground to consider that MgO rock salt accommodates Cr in the lattice.These observations support the argument that creation of active metal–metal dissolved rock salt oxide interface may be vital for improving the reactivity of MgH_(2),both for the improved storage of hydrogen and lithium.
文摘Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.
文摘The catalytic activity of Perovskite-type mixed oxides (LaCoO3, PrCoO3 and SmCoO3) for the reduction of cyclohexanone to cyclohexanol with 2-propanol (Meerwein-PonndorfVerley reduction) has been studied. The data have been correlated with the surface electron donor properties of these mixed oxides
文摘The computer molecular simulation technique was applied to study the chemisorption of thiophene and tetramethylthiophene as the model sulfides on the simple oxides and complex oxides of some transition metals as the catalytic materials. The study disclosed that the thiophene sulfides could enter into chemisorption with metal oxides such as VO, ZnO, NiO and Zn-Al-spinel. This interaction could lead to thiophene molecular structure deformation to be in an activated adsorption state, which could help to promote the conversion of thiophene sulfides in the course of catalytic cracking. The VO with a valence of 2 could provide relatively strong selective adsorption sites for the conversion of thiophene sulfides to apparently transform the molecular structures and electron cloud states of such heterocyclic sulfur compounds such as thiophene and tetramethylthiophene into an activated adsorption state. The effect of this interaction was more pronounced with respect to tetramethylthiophene.
基金supported by the National Key Research and Development Plan (2018YFC1900203)The National Science Fund for Distinguished Young Scholars (52000094)The National Natural Science Foundation of China (51968033)。
文摘Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully explored and pioneered.The catalytic performance,thermodynamics,kinetics,and catalytic oxidation mechanism of Pd/Cu liquid-phase catalyst catalytic oxidation of PH_(3) were thoroughly investigated.The results showed that Pd/Cu has a superior catalytic effect on the removal of PH_(3) in the gas mixture under low temperature.With CO as the carrier gas,the removal efficiency of PH_(3) could be maintained at 100%for nearly 450 min,indicating that the Pd/Cu liquid phase catalyst has good resistance to heterotoxicity.According to the thermodynamic,kinetic,and related characterization results of the PH_(3) purification process,the kinetic region of the gas–liquid reaction of PH_(3) absorption by Pd/Cu solution was an interfacial reaction.Pd was the primary catalyst and Cu was the secondary catalyst,and the adsorption of PH_(3)was a primary reaction.PH_(3) was spontaneously oxidized to H_(3)PO_(4) in the Pd/Cu catalytic system during the removal process.Pd was regenerated by O_(2) and Cu,increasing the activity and stability of the Pd/Cu catalyst in the sustain and efficient purification of PH_(3) in tail gas.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences,China(Nos.XDA23010300 and XDA23010000)National Natural Science Foundation of China(Nos.51878644 and 41573138)+1 种基金the National Key Research and Development Program of China(No.2016YFA0203000)the Plan for"National Youth Talents"of the Organization Department of the Central Committee。
文摘Atmospheric pollutants can deteriorate air quality and put human health at risk.There is a growing need for green,economical,and efficient technologies,among which catalytic elimination technology is the most promising,to remove atmospheric pollutants.Two-dimensional transition metal oxides(2D TMOs)have recently become attractive catalysts due to their highly exposed active sites,excellent reactant transport properties,and extraordinary catalytic performance.This review systematically summarizes the topdown and bottom-up preparation methods of 2D TMOs and focuses on the specific applications of 2D TMOs in the catalytic elimination of atmospheric inorganic pollutants and volatile organic pollutants.The development of 2D TMOs in the catalytic elimination of atmospheric pollutants is prospected.This review is expected to provide design insights into efficient 2D TMOs to remove atmospheric pollutants.
基金financially supported from the National Natural Science Foundation of China(Nos.12074048 and 12147102)the Project for Fundamental and Frontier Research in Chongqing(No.cstc2020jcyj-msxm X0796)the Fundamental Research Funds for the Central Universities(No.2022CDJXY-002)。
文摘The construction of highly active catalysts for methanol oxidation reaction(MOR)is central to direct methanol fuel cells.Tremendous progress has been made in transition metal phosphides(TMPs)based catalysts.However,TMPs would be partially damaged and transformed into new substances(e.g.,Pt-M-P composite,where M represents a second transition metal)during Pt deposition process.This would pose a large obstacle to the cognition of the real promoting effects of TMPs in MOR.Herein,Co_(2)P co-catalysts(Pt-P/Co_(2)P@NPC,where NPC stands for N and P co-doped carbon)and Pt-Co-P composite catalysts(Pt-CoP/NPC)were controllably synthesized.Electrocatalysis tests show that the Pt-Co-P/NPC exhibits superior MOR activity as high as 1016 m A/mg_(Pt),significantly exceeding that of Pt-P/Co_(2)P@NPC(345 m A/mg_(Pt)).This result indicates that the promoting effect is ascribed primarily to the resultant Pt-Co-P composite,in sharply contrast to previous viewpoint that Co_(2)P itself improves the activity.Further mechanistic studies reveal that Pt-Co-P/NPC exhibits much stronger electron interaction and thus manifesting a remarkably weaker CO absorption than Pt-P/Co_(2)P@NPC and Pt/C.Moreover,Pt-Co-P is also more capable of producing oxygen-containing adsorbate and thus accelerating the removal of surface-bonded CO^(*),ultimately boosting the MOR performance.
基金Project supported by Changjiang Scholar Incentive Program,Ministry of Education,China
文摘Six transition metal oxides were added in ceria-modified titania using a sol-gel method for catalytic oxidation of toluene.An MnOx based catalyst was found to be the most active one,with which toluene could be decomposed completely at 200 oC.The greatest Mn/Ti and molar ratio of the mobile oxygen to the total oxygen concentration,together with a large surface area and a low reduction peak-starting temperature,would result in its best activity in toluene oxidation.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 29903005 and 29573108) and the Modern Analysis Foundation of Nanjing University.
文摘This paper reviews the recent progress in the synthesis and application of pillared transition metal oxides during the last decade, mainly concerning the synthetic methods, structures, physical properties and catalytic appli-cations of the layered transition metal oxides pillared by inorganic oxides. The factors and their affecting regularity in the process of preparation, and some important results ob-tained in the catalytic application studies are summarized. Finally, a prospect on the potential new directions in this research area is also presented.