期刊文献+
共找到1,093篇文章
< 1 2 55 >
每页显示 20 50 100
Effect of Pre-Swirling Flow on Performance and Flow Fields in Semi-Opened Axial Fan
1
作者 Norimasa Shiomi Pin Liu Yoichi Kinoue 《Open Journal of Fluid Dynamics》 CAS 2023年第2期113-121,共9页
In this study, we tried to improve the performance by giving a pre-swirling flow to the radial inflow that occurred in the semi-opened axial fan. In addition, the flow fields of rotor outlet were clarified experimenta... In this study, we tried to improve the performance by giving a pre-swirling flow to the radial inflow that occurred in the semi-opened axial fan. In addition, the flow fields of rotor outlet were clarified experimentally, and the effect of pre-swirling flow was considered. The experiment was carried out using a performance test wind tunnel with a square cross section of 880 mm. Three types of casings were prepared, in which the blade tip protruded 0%, 20%, and 40% of the meridional chord length. They were called R25, R15, and R05, respectively, in the casing bellmouth model code. Guide blades for generating a pre-swirling flow were installed on the vertical wall surface of the casing. In addition, a vertical wall was installed 60% upstream of the meridional chord length as an obstacle to prevent axial inflow. The velocity fields of the rotor outlet were measured using a hot-wire anemometer. From the results, the pre-swirling flow did not significantly affect the fan performance. When there was no obstacles wall upstream, there was a partial increase in efficiency, but the difference was not so large. When there was an obstacle wall upstream, the efficiency increased overall in the case of R15, but in the case of R05, the efficiency increased only in the low flow rate region, and conversely decreased in the high flow rate region. By observing the blade outlet flow fields when the performance was improved, it was confirmed that the influence of the tip leakage vortex was weakened. 展开更多
关键词 Axial Fan Semi-Opened Narrow Space Pre-swirling flow Fan Performance
下载PDF
ON BASIC EQUATIONS OF TURBULENT SWIRLING GAS-SOLID FLOWS AND THEIR APPLICATION IN CYCLONES 被引量:2
2
作者 Zhou Lixing Tsinghua University,Beijing 100084,ChinaS.L.Soo (University of Illinois at Urbana-Champaign,USA) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1991年第4期309-315,共7页
The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows ... The basic equations of turbulent gas-solid flows are derived by using the pseudo-fluid model of particle phase with a refined two-phase turbulence model.These equations are then applied to swirling gas-particle flows for analyzing the collection efficiency in cyclone separators. 展开更多
关键词 turbulent two-phase flows swirling gas-particle flows cyclone flows two-phase turbulence models
下载PDF
Comparison Between LES and RANS Modeling of Turbulent Swirling Flows and Swirling Diffusion Combustion 被引量:3
3
作者 胡(王乐)元 周力行 张健 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2005年第3期313-317,共5页
Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subg... Turbulent swirling flows and methane-air swirling diffusion combustion are simulated by both large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid-scale (SGS) turbulence model, a second-order moment (SOM) subgrid-scale combustion model and an eddy break up (EBU) combustion model and Reynolds-averaged NavierStokes (RANS) modeling using the Reynolds stress equation model and a second-order moment (SOM) combustion model. For swirling flows, the LES statistical results give better agreement with the experimental results than the RANS modeling, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. For swirling combustion, both the proposed SOM SGS combustion model and the RANS-SOM model give the results in good agreement with the experimental results, but the LES-EBU modeling results are not in agreement with the experimental results. 展开更多
关键词 swirling combustion swirling flows large-eddy simulation
下载PDF
Large-eddy structures of turbulent swirling flows and methane-air swirling diffusion combustion 被引量:4
4
作者 Liyuan Hu Lixing Zhou Jian Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期419-424,共6页
Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combus... Turbulent swirling flows and methane-air swirling diffusion combustion are studied by large-eddy simulation (LES) using a Smagorinsky-Lilly subgrid scale turbulence model and a second-order moment (SOM) SGS combustion model, and also by RANS modeling using the Reynolds Stress equation model with the IPCM+wall and IPCM pressure-strain models and SOM combustion model. The LES statistical results for swirling flows give good agreement with the experimental results, indicating that the adopted subgrid-scale turbulence model is suitable for swirling flows. The LES instantaneous results show the complex vortex shedding pattern in swirling flows. The initially formed large vortex structures soon break up in swirling flows. The LES statistical results of combustion modeling are near the experimental results and are as good as the RANS-SOM modeling results. The LES results show that the size and range of large vortex structures in swirling combustion are different from those of isothermal swirling flows, and the chemical reaction is intensified by the large-eddy vortex structures. 展开更多
关键词 swirling combustion . swirling flows .Large-eddy simulation
下载PDF
THE DECAY OF SWIRLING FLOWS IN A TYPE OF CROSS-SECTION-VARYING PIPES
5
作者 XIONG Ao-kui(熊鳌魁) +1 位作者 WEI Qing-ding(魏庆鼎) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第8期983-988,共6页
The decay of weakly swirling flows in a type of cross-section-varying pipes was discussed analytically. For laminar swirling flow, the feature of exponential decay was demonstrated. For turbulent swirling flow, in spi... The decay of weakly swirling flows in a type of cross-section-varying pipes was discussed analytically. For laminar swirling flow, the feature of exponential decay was demonstrated. For turbulent swirling flow, in spite of the decay of circulation flux, a necessary condition for local circulation to amplify along downstream was obtained under the Boussinesq's hypothesis. 展开更多
关键词 swirling flow DECAY analysis of fluid flows
下载PDF
Improved Dissipation Rate Equation for Swirling and Rotating Pipe Flows
6
作者 Ronald Ming Cho So 《Journal of Applied Mathematics and Physics》 2022年第3期661-687,共27页
The nature of turbulent swirling and rotating flow in a straight pipe is investigated using a family of near-wall two-equation models. Specifically, the viability of three different near-wall two-equation models is as... The nature of turbulent swirling and rotating flow in a straight pipe is investigated using a family of near-wall two-equation models. Specifically, the viability of three different near-wall two-equation models is assessed. These models are asymptotically consistent near the wall. The first two models, one with isotropic and another with anisotropic eddy viscosity invoked, solved a dissipation rate equation with no explicit correction made to account for swirl and flow rotation. The third model assumes an isotropic eddy viscosity but solves an improved dissipation rate equation that has explicit corrections made to account for swirl and flow rotation. Calculations of turbulent flows in the swirl number range 0.25 - 1.3 with and without a central recirculation region reveal that, with the exception of the third model, neither one of the other two models can replicate the mean field at the swirl numbers tested. Furthermore, taking stress anisotropy into account also fails to model swirl effect correctly. Significant improvements can be realized from the third model, which is based on an improved dissipation rate equation and the assumption of isotropic eddy viscosity. The predicted mean flow and turbulence statistics correlate well with measurements at low swirl. At high swirl, the two-equation model with an improved dissipation rate equation can still be used to model swirling and rotating pipe flows with a central recirculation region. However, its simulation of flows without a central recirculation region is not as satisfactory. 展开更多
关键词 Dissipation Rate Equation swirling and Rotating Pipe flows
下载PDF
Determination of optimal blowing-to-suction flow ratio in mechanized excavation face with wall-mounted swirling ventilation using numerical simulations 被引量:6
7
作者 Runze Gao Pengfei Wang +1 位作者 Yongjun Li Ronghua Liu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第2期248-264,共17页
Wall-mounted swirling ventilation is a new type of system in mechanized excavation faces with a dust sup-pression performance that is closely related to the blowing-to-suction flow ratio.Physical and simulation models... Wall-mounted swirling ventilation is a new type of system in mechanized excavation faces with a dust sup-pression performance that is closely related to the blowing-to-suction flow ratio.Physical and simulation models were developed according to the No.C103 mechanized excavation face in the Nahe Coal Mine of the Baise Mining Bureau,Guangxi Province to optimize the blowing-to-suction flow ratio for wall-mounted swirling ventilation.Both the k-εturbulence model and the discrete phase model were utilized to simulate airflow field structures and dust concentration distribution patterns at various blowing-to-suction flow ratios.The results suggest that higher blowing-to-suction flow ratios increase the airflow field disturbance around the working face and weaken the intensity of the axial air curtain.On the other hand,both the intensity of the radial air curtain and the dust suppression effect are enhanced.At a blowing-to-suction flow ratio of 0.8,the wall-mounted swirling ventilation system achieved the most favorable dust suppression performance.Both the total dust and respirable dust had their lowest concentrations with maximum efficiencies of reducing both types at 90.33%and 87.16%,respectively. 展开更多
关键词 Mechanized excavation face Wall-mounted swirling ventilation Blowing-to-suction flow ratio Airflow field DUST
下载PDF
EXPERIMENTAL STUDIES ON SWIRLING AND RECIRCULATING TWO-PHASE FLOW FIELD IN A COLD MODEL OF DUAL-INLET SUDDEN-EXPANSION COMBUSTOR 被引量:1
8
作者 周力行 李荣先 廖昌明 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第4期193-197,共5页
The axial and tangential velocities of gas and particle phases and particle concentration for turbulent swirling and recirculating gas-particle (simulating gas-droplet) flows in a cold model of a dual-inlet sudden-exp... The axial and tangential velocities of gas and particle phases and particle concentration for turbulent swirling and recirculating gas-particle (simulating gas-droplet) flows in a cold model of a dual-inlet sudden-expansion combustor with partially tangential central tubes, proposed by the present authors, were measured by using a 2-D LDV system and a laser optic fiber system combined with a sampling probe. The results show that there are both gas and particle strongly reverse flows and swirling flows in the head part of the combustor. The velocity slip between gas and particle phases is remarkable. The particle concentration is higher near the wall and lower near the axis. There are two peaks in the concentration profiles near the inlet tubes. The above-obtained flow characteristics are favorable to ignition, flame stabilization and combustion. The results can also be used to validate the numerical modeling. 展开更多
关键词 swirling and recirculating flows gas-particle flows sudden-expansion combustor LDV measurements experimental studies
下载PDF
COMPUTATION OF RECIRCULATING SWIRLING FLOW WITH THE GLM REYNOLDS STRESS CLOSURE 被引量:1
9
作者 符松 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1994年第2期110-120,共11页
A Reynolds stress closure based on the generalized Langevin model (GLM), developed by Haworth and Pope, is applied to the flow calculation with swirl-induced recirculation. The purpose of the work is to assess the per... A Reynolds stress closure based on the generalized Langevin model (GLM), developed by Haworth and Pope, is applied to the flow calculation with swirl-induced recirculation. The purpose of the work is to assess the performance of this model under the complex flow conditions caused by the presence of strong swirl which gives rise to both unconventional recirculation in the vicinity of the symmetry axis and strong anisotropy in the turbulence field. Comparison of the computational results are made both with the experimental data of Roback and Johnson and the computational results obtained with the typical isotropization of production model (IPM) and the k-∈ type Boussinesq viscosity model. 展开更多
关键词 swirling flow turbulence modelling Reynolds stresses generalized Langevin model probability-density function
下载PDF
Numerical Simulation of Turbulent Swirling Pipe Flow with an Internal Conical Bluff Body 被引量:2
10
作者 Jinli Song Nabil Kharoua +1 位作者 Lyes Khezzar Mohamed Alshehhi 《Fluid Dynamics & Materials Processing》 EI 2021年第2期455-470,共16页
Turbulent swirling flow inside a short pipe interacting with a conical bluff body was simulated using the commercial CFD code Fluent.The geometry used is a simplified version of a novel liquid/gas separator used in mu... Turbulent swirling flow inside a short pipe interacting with a conical bluff body was simulated using the commercial CFD code Fluent.The geometry used is a simplified version of a novel liquid/gas separator used in multiphase flow metering.Three turbulence models,belonging to the Reynolds averaged Navier-Stokes(RANS)equations framework,are used.These are,RNG k-ε,SST k-ωand the full Reynolds stress model(RSM)in their steady and unsteady versions.Steady and unsteady RSM simulations show similar behavior.Compared to other turbulence models,they yield the best predictions of the mean velocity profiles though they exhibit some discrepancies in the core region.The influence of the Reynolds number on velocity profiles,swirl decay,and wall pressure on the bluff body are also presented.For Reynolds numbers generating a Rankine-like velocity profile,the width and magnitude of flow reversal zone decreases along the pipe axis disappearing downstream for lower Reynolds numbers.The tangential velocity peaks increase with increasing Reynolds number.The swirl decay rate follows an exponential form in accordance with the existing literature.These flow features would affect the performance of the real separator and,thus,the multiphase flow meter,noticeably. 展开更多
关键词 swirling pipe flow conical bluff body CFD SEPARATOR
下载PDF
Experimental and Numerical Investigation of Swirling Flow on Triple Elbow Pipe Layout 被引量:2
11
作者 Hideharu Takahashi San Shwin +2 位作者 Ari Hamdani Nobuyuki Fujisawa Hiroshige Kikura 《Journal of Flow Control, Measurement & Visualization》 2020年第2期45-62,共18页
The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a sw... The secondary flow downstream of a triple elbow layout was studied experimentally and numerically to visualize the flow behavior under swirling inlet flow conditions. The inlet swirling condition was generated by a swirl generator, consisting of a rotary pipe and honeycomb assembly. The experiments were carried out in turbulent water flow condition at Reynolds number Re = 1 × 104 and inlet swirl intensity S = 1. Ultrasonic measurements were taken at four locations downstream of the third elbow. The two-dimensional velocity field of the flow field was measured using the phased array ultrasonic velocity profiler technique to evaluate the flow field with separation. Furthermore, a numerical simulation was performed and its results were compared with the experimental data. The numerical result was obtained by solving three-dimensional, Reynolds-averaged Navier-Stokes equations with the renormalization group k-ε turbulence model. The experimental results confirmed that the swirling flow condition modified the size of the separation region downstream of the third elbow. A qualitative comparison between the experimental and CFD simulation results of the averaged velocity field downstream of the third elbow showed similar tendency on reverse flow. 展开更多
关键词 swirling flow TRIPLE ELBOW ULTRASOUND Phased Array Sensor VELOCITY PROFILE CFD Numerical Simulation
下载PDF
Experimental study and numerical simulation of gas-particle flows with radial bias combustion and centrally fuel rich swirl burners 被引量:1
12
作者 李争起 周珏 +2 位作者 陈智超 孙锐 秦裕琨 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第1期1-8,共8页
Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burner well a... Numerical simulation is applied to gas-particle flows of the primary and the secondary air ducts and burner region, and of two kinds of swirl burners. The modeling results of Radial Bias Combustion (RBC) burner well agreed with the data from the three-dimensional Phase-Doppler anemometry (PDA) experiment by Li, et al. The modeling test conducted in a 1025 t/h boiler was to study the quality of aerodynamics for a Central Fuel Rich (CFR) burner, and the Internal Recirculation Zone (IRZ) was measured. In addition, gas-particle flows with a CFR burner were investigated by numerical simulation, whose results accorded with the test data fundamentally. By analyzing the distribution of gas velocity and trajectories of particles respectively, it is found that the primary air’s rigidity of CFR burner is stronger than that of RBC burner, and the primary air mixes with the secondary air later. Furthermore, high concentration region of pulverized coal exists in the burner’s central zone whose atmosphere is reduced, and trajectories of particles in IRZ of CFR burner are longer than that of RBC burner. They are favorable to coal’s ignition and the reduction of NOx emission. 展开更多
关键词 swirl burner gas-particle flows numerical simulation
下载PDF
Discussion on Stability Criterion of Inviscid Compressible Swirling Flow
13
作者 Xia Nan (Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University) 《Advances in Manufacturing》 SCIE CAS 1999年第1期4-6,共3页
The stability condition for compressible and incompressible swirling flow is discussed and compared. It is found that Eckhoff and Storesletten's necessary condition for stability of inviscid compressible swirling ... The stability condition for compressible and incompressible swirling flow is discussed and compared. It is found that Eckhoff and Storesletten's necessary condition for stability of inviscid compressible swirling flow seems incorrect. 展开更多
关键词 flow stability Vortex flow swirling flow
下载PDF
Three Dimensional Numerical Analysis of Two Phase Flow Separation Using Swirling Fluidics
14
作者 M. M. Rahman Nobuatsu Tanaka +1 位作者 S. Yokobori S. Hirai 《Energy and Power Engineering》 2013年第4期301-306,共6页
Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low co... Vapor-water two phase flow separation in pressure vessel of nuclear power plants is accomplished with swirl motion using vanes. In order to reduce separation pressure loss and to make it economic, a new type of low cost simplified innovative separator using lattice core configuration is proposed where swirling is caused by the orthogonal driving flow. The performance of the separator has been assessed numerically with the commercial CFD code FLUENT 14.0. The numerical analysis is compared with the experiment. The geometry and flow conditions are chosen according to the experiment. In the analysis, standard k – e and realizable k – e turbulence models are implemented. The prediction of maximum air void fraction with realizable k – e model was almost the same as input air void fraction but the void fraction computed by standard k – e model was compared better with the experimental results than the realizable k – e model. Some discrepancies in flow pattern between the experimental and simulation results are observed which might be due to the difference of nozzle shape. However, a more detailed model is necessary to arrive at the final conclusion. 展开更多
关键词 Two PHASE flow SEPARATION NUCLEAR Power PLANTS swirling CFD
下载PDF
PREDICTIONS OF 3-D STRONGLY SWIRLING GAS-SOLID TWO-PHASE FLOW WITH GAS COMBUSTION
15
作者 王振宇 还博文 《Journal of Shanghai Jiaotong university(Science)》 EI 1998年第1期59-63,共5页
PREDICTIONSOF3┐DSTRONGLYSWIRLINGGAS┐SOLIDTWO┐PHASEFLOWWITHGASCOMBUSTIONWangZhenyu(王振宇)(ShanghaiWujingThermal... PREDICTIONSOF3┐DSTRONGLYSWIRLINGGAS┐SOLIDTWO┐PHASEFLOWWITHGASCOMBUSTIONWangZhenyu(王振宇)(ShanghaiWujingThermalPowerPlant)HuanBo... 展开更多
关键词 王振宇 STRONGLY swirling TWO-PHASE OF PREDICTIONS flow WITH COMBUSTION GAS-SOLID
下载PDF
Turbulence Characteristics of Swirling Reacting Flow in a Combustor with Staged Air Injection
16
作者 张健 普勇 周力行 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期634-641,共8页
This paper presents an experimental investigation of the turbulent reacting flow in a swirl combustor with staged air injection. The air injected into the combustor is composed of the primary swirling jet and the seco... This paper presents an experimental investigation of the turbulent reacting flow in a swirl combustor with staged air injection. The air injected into the combustor is composed of the primary swirling jet and the secon-dary non-swirling jet. A three dimension-laser particle dynamic analyzer (PDA) was employed to measure the in-stantaneous gas velocity. The probability density functions (PDF) for the instantaneous gas axial and tangential ve-locities at each measuring location, as well as the radial profiles of the root mean square of fluctuating gas axial and tangential velocities and the second-order moment for the fluctuating gas axial and tangential velocities are ob-tained. The measured results delineate the turbulence properties of the swirling reacting flow under the conditions of staged combustion. 展开更多
关键词 swirling reacting flow staged combustion turbulence characteristics
下载PDF
Effect of swirling flow on LDL and ox-LDL uptake in rabbit thoracic aorta
17
作者 Zufeng Ding,Xiaoyan Deng,Yubo Fan,Fan Zhan,Hongyan Kang(School of Biological Science and Medical Engineering,Beihang University,Beijing,China) 《医用生物力学》 EI CAS CSCD 2009年第S1期22-23,共2页
Object To elucidate the physiological significance of the spiral flow in the arterial system from the viewpoint of atherogenic lipid transport,an ex vivo experimental comparative
关键词 LDL Effect of swirling flow on LDL and ox-LDL uptake in rabbit thoracic aorta flow
下载PDF
Detached eddy simulation on the structure of swirling jet flow field
18
作者 CHEN Jianxiang YANG Ruiyue +4 位作者 HUANG Zhongwei LI Gensheng QIN Xiaozhou LI Jingbin WU Xiaoguang 《Petroleum Exploration and Development》 CSCD 2022年第4期929-941,共13页
The improved delayed detached eddy simulation method with shear stress transport model was used to analyze the evolution of vortex structure,velocity and pressure fields of swirling jet.The influence of nozzle pressur... The improved delayed detached eddy simulation method with shear stress transport model was used to analyze the evolution of vortex structure,velocity and pressure fields of swirling jet.The influence of nozzle pressure drop on vortex structure development and turbulence pulsation was investigated.The development of vortex structure could be divided into three stages:Kelvin-Helmholtz(K-H)instability,transition stage and swirling flow instability.Swirling flow could significantly enhance radial turbulence pulsation and increase diffusion angle.At the downstream of the jet flow,turbulence pulsation dissipation was the main reason for jet velocity attenuation.With the increase of pressure drop,the jet velocity,pulsation amplitude and the symmetry of velocity distribution increased correspondingly.Meanwhile the pressure pulsation along with the axis and vortex transport intensity also increased significantly.When the jet distance exceeded about 9 times the dimensionless jet distance,the impact distance of swirling jet could not be improved effectively by increasing the pressure drop.However,it could effectively increase the swirl intensity and jet diffusion angle.The swirling jet is more suitable for radial horizontal drilling with large hole size,coalbed methane horizontal well cavity completion and roadway drilling and pressure relief,etc. 展开更多
关键词 swirling jet flow field structure detached eddy vortex evolution turbulence pulsation jet velocity jet diffusion angle
下载PDF
Stability Analysis of Slowly Divergent Swirling Flow(Ⅰ)──Theory
19
作者 夏南 尹协远 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第11期1047-1054,共8页
The stability of inviscid incompressible swirling flow with slowly divergence is investigated A multiple scale expansion is used to develop a linear stability study of slowly divergent swirling flow with non-axisymmet... The stability of inviscid incompressible swirling flow with slowly divergence is investigated A multiple scale expansion is used to develop a linear stability study of slowly divergent swirling flow with non-axisymmetric disturbances The differental equations of zero-order and first-order disturbance module and governing equation of amplitude variation due to slowly divergent flow are derved The plaschko s equation for slowly divergent swirl-free jet has been extended to slowly divergent flow with swirlin the present study. 展开更多
关键词 stabilty swirling flow vortex flow
下载PDF
Platelet adhesion to the surface of a sudden tubular expansion tube under swirling flow condition
20
作者 Fan ZHAN,Xiaoyan DENG,Yubo FAN(School of Biological Science&Medical Engineering,Beihang University,Beijing,100191,China) 《医用生物力学》 EI CAS CSCD 2009年第S1期22-22,共1页
The size mismatch in an end-to-end vascular anastomosis between the host vessel and the graft may cause flow disturbance and predispose to thrombosis [1].Although a number of techniques have been employed to reduce th... The size mismatch in an end-to-end vascular anastomosis between the host vessel and the graft may cause flow disturbance and predispose to thrombosis [1].Although a number of techniques have been employed to reduce the risk of anastomotic thrombosis due to the size mismatch。 展开更多
关键词 flow Platelet adhesion to the surface of a sudden tubular expansion tube under swirling flow condition
下载PDF
上一页 1 2 55 下一页 到第
使用帮助 返回顶部