The lining concrete of subsea tunnel services under combined hydraulic pressure, mechanical and environmental loads. The chloride ion and water penetrations into concrete under hydraulic pressure were investigated. Th...The lining concrete of subsea tunnel services under combined hydraulic pressure, mechanical and environmental loads. The chloride ion and water penetrations into concrete under hydraulic pressure were investigated. The experimental results indicate that the water penetration depth, chloride ion transportation depth, and the concentration of chloride ion ingression into concrete increase with raised hydraulic pressure and hold press period. But the chloride ion transportation velocity is only 53% of that of water when concrete specimens are under hydraulic pressure. The chloride transportation coefficient of concrete decreases with hold press period as power function. And that would increase 500% 600% in chloride transportation coefficient when the hydraulic pressure increases from 0 to 1.2 MPa. The hydraulic pressure also decreases the bound chloride ion of concrete to about zero. Besides, the low water-cementitions materials and suitable content of mineral admixture(including fly ash and slag) improve the resistance capacity of chloride penetration, and binding capacity of concrete under hydraulic pressure.展开更多
基金Projects(50708046,51178230)supported by the National Natural Science Foundation of ChinaProject(2009CB623203)supported by the National Basic Research Program(973 Program)of ChinaProject(2010CEM006)supported by State Key Lab of High Performance Civil Engineering Materials,China
文摘The lining concrete of subsea tunnel services under combined hydraulic pressure, mechanical and environmental loads. The chloride ion and water penetrations into concrete under hydraulic pressure were investigated. The experimental results indicate that the water penetration depth, chloride ion transportation depth, and the concentration of chloride ion ingression into concrete increase with raised hydraulic pressure and hold press period. But the chloride ion transportation velocity is only 53% of that of water when concrete specimens are under hydraulic pressure. The chloride transportation coefficient of concrete decreases with hold press period as power function. And that would increase 500% 600% in chloride transportation coefficient when the hydraulic pressure increases from 0 to 1.2 MPa. The hydraulic pressure also decreases the bound chloride ion of concrete to about zero. Besides, the low water-cementitions materials and suitable content of mineral admixture(including fly ash and slag) improve the resistance capacity of chloride penetration, and binding capacity of concrete under hydraulic pressure.