期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基因工程菌Streptomyces bingchenggensis BCJ60的次级代谢产物研究
1
作者 李建宋 李亚 +3 位作者 郝之奎 张明涛 王继栋 向文胜 《天然产物研究与开发》 CAS CSCD 2022年第10期1727-1735,共9页
对基因工程菌Streptomyces bingchenggensis BCJ60的次级代谢产物化学成分及杀虫活性进行研究,采用正相硅胶柱层析、反向硅胶柱层析和Sephadex LH-20分离纯化,结合核磁共振、质谱等波谱学方法鉴定化合物结构,从中分离获得11个化合物,分... 对基因工程菌Streptomyces bingchenggensis BCJ60的次级代谢产物化学成分及杀虫活性进行研究,采用正相硅胶柱层析、反向硅胶柱层析和Sephadex LH-20分离纯化,结合核磁共振、质谱等波谱学方法鉴定化合物结构,从中分离获得11个化合物,分别为3,4-dihydro-3-hydroxy-5-oxomilbemycin A3(1)、3,4-dihydro-3-hydroxy-5-oxomilbemycin A4(2)、seco-milbemycin C(3)、seco-milbemycin A(4)、米尔贝霉素H(5)、米尔贝霉素β_(13)(6)、米尔贝霉素ST906(7)、米尔贝霉素β_(3)(8)、25-ethylmilbemycinβ_(3)(9)、米尔贝霉素β_(6)(10)和米尔贝霉素β_(7)(11)。其中化合物1和2为新化合物,杀虫活性结果显示,化合物1和2对朱砂叶螨(LC_(50)=0.121±0.010 mg/L和0.116±0.015 mg/L)和松材线虫(LC_(50)=5.217±0.064 mg/L和5.581±0.059 mg/L)具有显著的杀虫活性,与商品化的杀虫剂米尔贝霉素A3/A4相比没有显著性差异。 展开更多
关键词 基因工程菌 Streptomyces bingchenggensis BCJ60 次级代谢产物 杀虫杀螨活性
下载PDF
Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon sediment 被引量:4
2
作者 Olabisi Flora Davies-Bolorunduro Isaac Adeyemi Adeleye +1 位作者 Moshood Olushola Akinleye Peng George Wang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2019年第3期201-208,共8页
Thirty-two actinomycetes strains were isolated from sediment samples from 12 different sites at Lagos Lagoon and identified using standard physiological and biochemical procedures as well as 16S rDNA gene sequence ana... Thirty-two actinomycetes strains were isolated from sediment samples from 12 different sites at Lagos Lagoon and identified using standard physiological and biochemical procedures as well as 16S rDNA gene sequence analysis. Secondary metabolites were extracted from the strains and their anticancer activity on the K562 (Human acute myelocytic leukemia), HeLa (cervical carcinoma), AGS (Human gastric), MCF- 7 (breast adenocarcinoma) and HL-60 (Human acute promyelocytic leukemia) cell lines was determined. The metabolic extracts exhibited cytotoxicity with IC50 values ranging from 0.030 mg/mL to 4.4 mg/mL. The Streptomyces bingchenggensis ULS14 extract was cytotoxic against all the cell lines tested. The bioactivity-guided extraction and purification of the metabolic extracts from this strain yielded two purified anticancer compounds: ULDF4 and ULDF5. The structures of the extracted compounds were determined using spectroscopic analyses, including electrospray ionization mass spectrophotometer and nuclear magnetic resonance (1 Dimensional and 2 Dimensional), and were shown to be structurally similar to staurosporine and kigamicin. The IC50 of ULDF4 and ULDF5 against the HeLa cell line was 0.034 mg/mL and 0.075 mg/mL, respectively. This study is the first to reveal the anticancer potential of actinomycetes from Lagos Lagoon, which could be exploited for therapeutic purposes. 展开更多
关键词 STREPTOMYCES bingchenggensis ULS14 METABOLIC extracts Cytotoxicity Spectroscopy Kigamicin STAUROSPORINE
下载PDF
Transcriptome-guided identification of a four-component system, SbrH1-R, that modulates milbemycin biosynthesis by influencing gene cluster expression, precursor supply, and antibiotic efflux 被引量:1
3
作者 Lan Ye Yanyan Zhang +4 位作者 Shanshan Li Hairong He Guomin Ai Xiangjing Wang Wensheng Xiang 《Synthetic and Systems Biotechnology》 SCIE 2022年第2期705-717,共13页
Streptomyces can produce numerous antibiotics and many other bioactive compounds.Recently,the molecular mechanisms of transcriptional regulators in control of antibiotic production by influencing the expression of bio... Streptomyces can produce numerous antibiotics and many other bioactive compounds.Recently,the molecular mechanisms of transcriptional regulators in control of antibiotic production by influencing the expression of biosynthetic gene clusters(BGCs)have been extensively studied.However,for regulators that affect both antibiotic production and cell growth,the way to influence antibiotic production may be diverse,but related studies are limited.Here,based on time-course transcriptome analysis,a four-component system,SbrH1-R,consisting of the two-component system SbrKR(SBI_03479/3478)and two hypothetical proteins SbrH1(SBI_03481)and SbrH2(SBI_03480)potentially related with the biosynthesis of milbemycins was identified in Streptomyces bingchenggensis BC-101-4.Deletion of sbrH1-R resulted in weakened cell growth but a 110%increase of milbemycin production compared with that in BC-101-4.Comparative transcriptome analyses of the sbrH1-R mutant and BC-101-4 revealed that SbrH1-R not only indirectly represses milbemycin BGC expression,but also inhibits milbemycin production by modulating expression levels of genes related to precursor supply and antibiotic efflux.Further genetic experiments identified several new targets,including five precursor supply-associated reactions/pathways(e.g.,the reaction from pyruvate to acetyl-CoA,the reaction from acetyl-CoA to citrate,the fatty acidβ-oxidation process,and the branched chain amino acid and phenylalanine acid degradation pathways)and a milbemycin exporter system(MilEX2)that can be engineered for milbemycin overproduction.These results shed new light on the understanding of regulation of milbemycin biosynthesis and provide useful targets for future metabolic engineering of the native host to improve milbemycin production. 展开更多
关键词 Milbemycins Streptomyces bingchenggensis SbrH1-R Precursor supply Milbemycin exporter OVERPRODUCTION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部