High performance hardware architecture for depth measurement by using binocular-camera is proposed.In the system,at first,video streams of the target are captured by left and right charge-coupled device(CCD)cameras to...High performance hardware architecture for depth measurement by using binocular-camera is proposed.In the system,at first,video streams of the target are captured by left and right charge-coupled device(CCD)cameras to obtain an image including the target.Then,two different images with two different view points are obtained,and they are used in calculating the position deviation of the image's pixels based on triangular measurement.Finally,the three-dimensional coordinate of the object is reconstructed.All the video data is processed by using field-programmable gate array(FPGA)in real-time.Hardware implementation speeds up the performance and reduces the power,thus,this hardware architecture can be applied in the portable environment.展开更多
In order to quickly and efficiently get the information of the bottom of the shoe pattern and spraying trajectory, the paper proposes a method based on binocular stereo vision. After acquiring target image, edge detec...In order to quickly and efficiently get the information of the bottom of the shoe pattern and spraying trajectory, the paper proposes a method based on binocular stereo vision. After acquiring target image, edge detection based on the canny algorithm, the paper begins stereo matching based on area and characteristics of algorithm. To eliminate false matching points, the paper uses the principle of polar geometry in computer vision. For the purpose of gaining the 3D point cloud of spraying curve, the paper adopts the principle of binocular stereo vision 3D measurement, and then carries on cubic spline curve fitting. By HALCON image processing software programming, it proves the feasibility and effectiveness of the method展开更多
极线校正是一种针对双目相机原始图像对的投影变换方法,使校正后图像对应的极线位于同一水平线上,消除垂直视差,将立体匹配优化为一维搜索问题。针对现今极线校正的不足,本文提出一种基于双目相机平移矩阵的极线校正方法:首先利用奇异...极线校正是一种针对双目相机原始图像对的投影变换方法,使校正后图像对应的极线位于同一水平线上,消除垂直视差,将立体匹配优化为一维搜索问题。针对现今极线校正的不足,本文提出一种基于双目相机平移矩阵的极线校正方法:首先利用奇异值分解(singular value decomposition,SVD)平移矩阵,求得校正后的新旋转矩阵;其次通过校正前后的图像关系确立一个新相机内参矩阵,完成极线校正。运用本文方法对SYNTIM数据库的不同场景多组双目图像进行验证,实验结果表明平均校正误差在0.6像素内,图像几乎不产生畸变,平均偏斜在2.4°左右,平均运行时间为0.2302 s,该方法具有应用价值,完全满足极线校正的需求,解决了双目相机在立体匹配过程中由于相机的机械偏差而产生的误差和繁琐的计算过程。展开更多
文摘High performance hardware architecture for depth measurement by using binocular-camera is proposed.In the system,at first,video streams of the target are captured by left and right charge-coupled device(CCD)cameras to obtain an image including the target.Then,two different images with two different view points are obtained,and they are used in calculating the position deviation of the image's pixels based on triangular measurement.Finally,the three-dimensional coordinate of the object is reconstructed.All the video data is processed by using field-programmable gate array(FPGA)in real-time.Hardware implementation speeds up the performance and reduces the power,thus,this hardware architecture can be applied in the portable environment.
文摘In order to quickly and efficiently get the information of the bottom of the shoe pattern and spraying trajectory, the paper proposes a method based on binocular stereo vision. After acquiring target image, edge detection based on the canny algorithm, the paper begins stereo matching based on area and characteristics of algorithm. To eliminate false matching points, the paper uses the principle of polar geometry in computer vision. For the purpose of gaining the 3D point cloud of spraying curve, the paper adopts the principle of binocular stereo vision 3D measurement, and then carries on cubic spline curve fitting. By HALCON image processing software programming, it proves the feasibility and effectiveness of the method
文摘极线校正是一种针对双目相机原始图像对的投影变换方法,使校正后图像对应的极线位于同一水平线上,消除垂直视差,将立体匹配优化为一维搜索问题。针对现今极线校正的不足,本文提出一种基于双目相机平移矩阵的极线校正方法:首先利用奇异值分解(singular value decomposition,SVD)平移矩阵,求得校正后的新旋转矩阵;其次通过校正前后的图像关系确立一个新相机内参矩阵,完成极线校正。运用本文方法对SYNTIM数据库的不同场景多组双目图像进行验证,实验结果表明平均校正误差在0.6像素内,图像几乎不产生畸变,平均偏斜在2.4°左右,平均运行时间为0.2302 s,该方法具有应用价值,完全满足极线校正的需求,解决了双目相机在立体匹配过程中由于相机的机械偏差而产生的误差和繁琐的计算过程。