针对采用传统面向快速与旋转的二进制鲁棒独立基本特征(Oriented Fast and Rotated BRIEF,ORB)算法难以实现搭载双目立体视觉的机械臂对目标的实时、精准抓取等问题,提出一种基于改进的ORB算法的机械臂识别定位及抓取方法。首先,利用改...针对采用传统面向快速与旋转的二进制鲁棒独立基本特征(Oriented Fast and Rotated BRIEF,ORB)算法难以实现搭载双目立体视觉的机械臂对目标的实时、精准抓取等问题,提出一种基于改进的ORB算法的机械臂识别定位及抓取方法。首先,利用改进的ORB算法对目标进行识别,根据双目立体视觉光轴平行模型对目标实施定位;随后,运用标准D-H参数法建立机械臂的数学模型并进行逆运动学求解;最后,将获得的机械臂各关节驱动角传输至系统控制端,驱使机械臂末端执行器完成对目标的抓取作业。结果表明,提出的改进的ORB算法较传统ORB算法提高了目标识别定位的速度与准确度,有效提升了机械臂实施抓取时的实时性与精确性。展开更多
A binocular stereo vision positioning method based on the scale-invariant feature trans- form (SIFT) algorithm is proposed. The SIFT algorithm is for extracting distinctive invariant features from images. First, ima...A binocular stereo vision positioning method based on the scale-invariant feature trans- form (SIFT) algorithm is proposed. The SIFT algorithm is for extracting distinctive invariant features from images. First, image median filtering is used to eliminate image noise. Then, according to the characteristics of the target satellite, image map is used to extract the middle part of the target satel- lite. At last, the feature match point under the SIFT algorithm is extracted, and the three-dimension- al position and orientation are calculated. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The experimental result shows that the al- gorithm works well and the maximum relative error is within 0. 02 m and 2.5 o展开更多
文摘针对采用传统面向快速与旋转的二进制鲁棒独立基本特征(Oriented Fast and Rotated BRIEF,ORB)算法难以实现搭载双目立体视觉的机械臂对目标的实时、精准抓取等问题,提出一种基于改进的ORB算法的机械臂识别定位及抓取方法。首先,利用改进的ORB算法对目标进行识别,根据双目立体视觉光轴平行模型对目标实施定位;随后,运用标准D-H参数法建立机械臂的数学模型并进行逆运动学求解;最后,将获得的机械臂各关节驱动角传输至系统控制端,驱使机械臂末端执行器完成对目标的抓取作业。结果表明,提出的改进的ORB算法较传统ORB算法提高了目标识别定位的速度与准确度,有效提升了机械臂实施抓取时的实时性与精确性。
文摘A binocular stereo vision positioning method based on the scale-invariant feature trans- form (SIFT) algorithm is proposed. The SIFT algorithm is for extracting distinctive invariant features from images. First, image median filtering is used to eliminate image noise. Then, according to the characteristics of the target satellite, image map is used to extract the middle part of the target satel- lite. At last, the feature match point under the SIFT algorithm is extracted, and the three-dimension- al position and orientation are calculated. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The experimental result shows that the al- gorithm works well and the maximum relative error is within 0. 02 m and 2.5 o