The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the ...The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the acid rain. In this paper, the physicochemical properties of bio-briquette and its ash were investigated. And the acid soil was improved by the bio-briquette combustion ash, which contained nutritive substances such as P, N, K and had the acid-neutralizing capacity(ANC). The pH, EC, effective nutrient elements(Ca, Mg, K, P and N), heavy metal elements(Al, Cu, Cd, Cr, Zn and Mn) and acid-neutralizing capacity change of ash-added soils within the range of 0—10%, were also studied. Specially, when 5% bio-briquette combustion ash was added to the tested soil, the content of the effective elements such as Ca, Mg and K rose by 100 times, 7 times and twice, respectively. The total nitrogen also increased by about twice. The results showed the oxyanions such as that of Al, Cu, Cd, Cr, Zn and Mn were not potentially dangerous, because they were about the same as the averages of them in Chinese soil. It is shown that the ANC became stronger, though the ANC hardly increases in the ash-added soil. On the basis of the evaluation indices, it is concluded that the best mixture ratio is to add 2.5%—8% of the bio-briquette combustion ash to the tested soil.展开更多
A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing th...A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing the experiment data,the results show that the dye wastewater’s organic matter is removed greatly after be-ing treated by this new kind of bio-fluid bed.On the other hand,the removal efficiency of chromaticity of展开更多
Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of ...Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of biofilms in ground water remediation technology can be detrimental to the effectiveness of a ground water remediation project. Several alternatives are available to a remedial design engineer, such as Permeable Reactive Barriers (PRBs) and in -situ bioremediation, Hydrogen Releasing Compounds (HRCs) barrier, Oxygen Releasing Compounds (ORCs) barrier etc. which are efficient and cost- effective technologies. Excessive biomass formation renders a barrier ineffective in degrading the contaminants, Efforts are made to develop kinetics models which accurately determine bio - fouling and bio - filn formation and to control excessive biomass formation.展开更多
为开拓低阶粉煤资源的高效分质利用途径,以长焰煤粉煤和生物质为主要原料,制备了生物质热解型煤,采用热重分析和固定床热解试验研究了其热解特性,并与原料粉煤进行了对比。结果表明:型煤相比原煤更易于发生热分解反应,其最大热失重速...为开拓低阶粉煤资源的高效分质利用途径,以长焰煤粉煤和生物质为主要原料,制备了生物质热解型煤,采用热重分析和固定床热解试验研究了其热解特性,并与原料粉煤进行了对比。结果表明:型煤相比原煤更易于发生热分解反应,其最大热失重速率峰温相比原煤减小;在失重率小于60%(热解温度低于503℃)时,型煤热解活化能高于原煤,失重率高于60%时,其活化能低于原煤;型煤和原煤的热解活化能主要分布在200-300、150-250 k J/mol;型煤在较低温度下热解对焦油具有较高的选择性,在高温下热解更有利于生成气体产物;型煤热解气体产物组成及其随热解温度的变化规律与原煤基本一致,但型煤热解气体中CO2的含量较原煤高0.5倍左右。展开更多
文摘The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the acid rain. In this paper, the physicochemical properties of bio-briquette and its ash were investigated. And the acid soil was improved by the bio-briquette combustion ash, which contained nutritive substances such as P, N, K and had the acid-neutralizing capacity(ANC). The pH, EC, effective nutrient elements(Ca, Mg, K, P and N), heavy metal elements(Al, Cu, Cd, Cr, Zn and Mn) and acid-neutralizing capacity change of ash-added soils within the range of 0—10%, were also studied. Specially, when 5% bio-briquette combustion ash was added to the tested soil, the content of the effective elements such as Ca, Mg and K rose by 100 times, 7 times and twice, respectively. The total nitrogen also increased by about twice. The results showed the oxyanions such as that of Al, Cu, Cd, Cr, Zn and Mn were not potentially dangerous, because they were about the same as the averages of them in Chinese soil. It is shown that the ANC became stronger, though the ANC hardly increases in the ash-added soil. On the basis of the evaluation indices, it is concluded that the best mixture ratio is to add 2.5%—8% of the bio-briquette combustion ash to the tested soil.
文摘A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing the experiment data,the results show that the dye wastewater’s organic matter is removed greatly after be-ing treated by this new kind of bio-fluid bed.On the other hand,the removal efficiency of chromaticity of
文摘Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of biofilms in ground water remediation technology can be detrimental to the effectiveness of a ground water remediation project. Several alternatives are available to a remedial design engineer, such as Permeable Reactive Barriers (PRBs) and in -situ bioremediation, Hydrogen Releasing Compounds (HRCs) barrier, Oxygen Releasing Compounds (ORCs) barrier etc. which are efficient and cost- effective technologies. Excessive biomass formation renders a barrier ineffective in degrading the contaminants, Efforts are made to develop kinetics models which accurately determine bio - fouling and bio - filn formation and to control excessive biomass formation.
文摘为开拓低阶粉煤资源的高效分质利用途径,以长焰煤粉煤和生物质为主要原料,制备了生物质热解型煤,采用热重分析和固定床热解试验研究了其热解特性,并与原料粉煤进行了对比。结果表明:型煤相比原煤更易于发生热分解反应,其最大热失重速率峰温相比原煤减小;在失重率小于60%(热解温度低于503℃)时,型煤热解活化能高于原煤,失重率高于60%时,其活化能低于原煤;型煤和原煤的热解活化能主要分布在200-300、150-250 k J/mol;型煤在较低温度下热解对焦油具有较高的选择性,在高温下热解更有利于生成气体产物;型煤热解气体产物组成及其随热解温度的变化规律与原煤基本一致,但型煤热解气体中CO2的含量较原煤高0.5倍左右。