Global crises, notably climate shocks, degraded ecosystems, and growing energy demand, enforce sustainable production and consumption pathways. A circular bioeconomy offers the opportunities to actualize resource and ...Global crises, notably climate shocks, degraded ecosystems, and growing energy demand, enforce sustainable production and consumption pathways. A circular bioeconomy offers the opportunities to actualize resource and eco-efficiency enhancement, valorization of waste streams, reduction of fossil energy and greenhouse gas (GHG) emissions. Albeit biomass resources are a potential feedstock for bio-hydrogen (bio-H2) production, Ghana’s agricultural residues are not fully utilized. This paper examines the economic and environmental impact of bio-H2 electricity generation using agricultural residues in Ghana. The bio-H2 potential was determined based on biogas steam reforming (BSR). The research highlights that BSR could generate 2617 kt of bio-H2, corresponding to 2.78% of the global hydrogen demand. Yam and maize residues contribute 50.47% of the bio-H2 produced, while millet residues have the most negligible share. A tonne of residues could produce 16.59 kg of bio-H2 and 29.83 kWh of electricity. A total of 4,705.89 GWh of electricity produced could replace the consumption of 21.92% of Ghana’s electricity. The economic viability reveals that electricity cost is $0.174/kWh and has a positive net present value of $2135550609.45 with a benefit-to-cost ratio of 1.26. The fossil diesel displaced is 1421.09 ML, and 3862.55 kt CO2eq of carbon emissions decreased corresponding to an annual reduction potential of 386.26 kt CO2eq. This accounts for reducing 10.26% of Ghana’s GHG emissions. The study demonstrates that hydrogen-based electricity production as an energy transition is a strategic innovation pillar to advance the circular bioeconomy and achieve sustainable development goals.展开更多
Hydrogen was prepared via catalytic steam reforming of bio-oil which was obtained from fast pyrolysis of biomass in a fluidized bed reactor.Influential factors including temperature,weight hourly space velocity(WHSV) ...Hydrogen was prepared via catalytic steam reforming of bio-oil which was obtained from fast pyrolysis of biomass in a fluidized bed reactor.Influential factors including temperature,weight hourly space velocity(WHSV) of bio-oil,mass ratio of steam to bio-oil(S/B) as well as catalyst type on hydrogen selectivity and other desirable gas products were investigated.Based on hydrogen in stoichiometric potential and carbon balance in gaseous phase and feed,hydrogen yield and carbon selectivity were examined.The experimental results show that higher temperature favors the hydrogen selectivity by H2 mole fraction in gaseous products stream and it plays an important role in hydrogen yield and carbon selectivity.Higher hydrogen selectivity and yield,and carbon selectivity were obtained at lower bio-oil WHSV.In catalytic steam reforming system a maximum steam concentration value exists,at which hydrogen selectivity and yield,and carbon selectivity keep constant.Through experiments,preferential operation conditions were obtained as follows:temperature 800~850℃,bio-oil WHSV below 3.0 h-1,and mass ratio of steam to bio-oil 10~12.The performance tests indicate that Ni-based catalysts are optional,especially Ni/α-Al2O3 effective in the steam reforming process.展开更多
A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to...A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.展开更多
The steam reforming of four bio-oil model compounds(acetic acid,ethanol,acetone and phenol) was investigated over Ni-based catalysts supported on Al2O3 modified by Mg,Ce or Co in this paper.The activation process ca...The steam reforming of four bio-oil model compounds(acetic acid,ethanol,acetone and phenol) was investigated over Ni-based catalysts supported on Al2O3 modified by Mg,Ce or Co in this paper.The activation process can improve the catalytic activity with the change of high-valence Ni(Ni2O3,NiO) to low-valence Ni(Ni,NiO).Among these catalysts after activation,the Ce-Ni/Co catalyst showed the best catalytic activity for the steam reforming of all the four model compounds.After long-term experiment at 700°C and the S/C ratio of 9,the Ce-Ni/Co catalyst still maintained excellent stability for the steam reforming of the simulated bio-oil(mixed by the four compounds with the equal masses).With CaO calcinated from calcium acetate as CO2 sorbent,the catalytic steam reforming experiment combined with continuous in situ CO2 adsorption was performed.With the comparison of the case without the adding of CO2 sorbent,the hydrogen concentration was dramatically improved from 74.8% to 92.3%,with the CO2 concentration obviously decreased from 19.90% to 1.88%.展开更多
Objective To evaluate the performance of vaporized hydrogen peroxide (VHP) for the bio-decontamination of the high efficiency particulate air (HEPA) filter unit. Methods Self-made or commercially available bioindi...Objective To evaluate the performance of vaporized hydrogen peroxide (VHP) for the bio-decontamination of the high efficiency particulate air (HEPA) filter unit. Methods Self-made or commercially available bioindicators were placed at designated locations in the HEPA filter unit under VHP fumigation. The spores on coupons were then extracted by 0.5 h submergence in eluent followed by 200- time violent knocks. Results Due to the presence of HEPA filter in the box, spore recovery from coupons placed at the bottom of the filter downstream was significantly higher than that from coupons placed at the other locations. The gap of decontamination efficiency between the top and the bottom of the filter downstream became narrower with the exposure time extended. The decontamination efficiency of the bottom of the filter downstream only improved gently with the injection rate of H202 increased and the decontamination efficiency decreased instead when the injection rate exceeded 2.5 g/min. The commercially available bioindicators were competent to indicate the disinfection efficiency of VHP for the HEPA filter unit. Conclusion The HEPA filter unit is more difficult than common enclosure to decontaminate using VHP fumigation. Complete decontamination can be achieved by extending fumigation time. VHP fumigation can be applied for in-situ biodecontamination of the HEPA filter unit as an alternative method to formaldehyde fumigation.展开更多
Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage application...Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage applications.In this regard,their controllable synthesis in a large scale at low cost has readily become a focus of research.Herein we report diatomite-template generic and scalable production of VS2 and other transition metal sulfides targeting emerging energy conversion and storage applications.The conformal growth of VS2over diatomite template would endow them with defect-abundant features.Throughout detailed experimental investigation in combination with theoretical simulation,we reveal that the enriched active sites/sulfur vacancies of thus-derived VS2 architectures would pose positive impacts on the catalytic performance such in electrocatalytic hydrogen evolution reactions.We further show that the favorable electrical conductivity and highly exposed sites of VS2 hold promise for serving as sulfur host in the realm of Li-S batteries.Our work offers new insights into the templated and customized synthesis of defect-rich sulfides in a scalable fashion to benefit multifunctional energy applications.展开更多
Series batch experiments were made to investigate the influences of pH and temperature on the activity of acidogenus and acidogenus in glucose-degrading bacteria cultured in an UASB(up-flow anaerobic sludge blanket) r...Series batch experiments were made to investigate the influences of pH and temperature on the activity of acidogenus and acidogenus in glucose-degrading bacteria cultured in an UASB(up-flow anaerobic sludge blanket) reactor for glucose fermentation and hydrogen production. The bacteria exhibited different capability to recover to produce hydrogen at different initial pH and temperature. Hydrogen production, VFA production, COD removal and COD balance were measured at different pH and 20, 37 ℃ respectively with the same glucose and VSS in vials. Results showed that there are different influences on the activity of acidogenic bacteria at varied pH and result in a variety of amount of hydrogen production, specific hydrogen production and VFA production, etc. Through the present study, when nonmalized to the weight of VSS, a maximal biogas and hydrogen production of 1 717 1 ml/g and 870 0 ml/g were obtained when pH equals 9 at 37 ℃ and 679 00 ml/g of biogas, 246 35 ml/g of hydrogen were also got when pH equals 5 at 20 ℃ respectively. The maximal specific hydrogen production (SHA) was 116 56 ml/h,g around 8 of pH value at 37 ℃ and 6 46 ml/h,g around 4 of pH value at 20 ℃, which were obtained by calculating the slope of the accumulated hydrogen gas via time. Butyric acid fermentation was important for hydrogen production. Large quantity of unknown COD was found in the vials when a small quantity of bio-gas was produced, but relative less unknown COD was determined when there was large quantity of hydrogen produced. This revealed a better engineering foreground for application of hydrogen bio-production.展开更多
Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mech...Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mechanisms. Methods The viability and apoptosis of PC 12 cells were determinded by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4′,6′-diamidino-2-phenylindole (DAPI) staining, respectively. The expressions of 14-3-3 protein and phospholylated p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. Enzyme-linked immunosorbent assay (ELISA) was used to measure the activity of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Results The cell viability decreased and the number of apoptotic cells increased dramatically in MPP^+ group compared with that in Control group. HPP induced a significant increase in cell viability and a marked decrease in population of apoptotic cells of the MPP^+- treated PC 12 cells, accompanied with up-regulation of 14-3-3 protein and increase of ERK 1/2 and p38 MAPK activities. The 14-3-3 protein expression was positively correlated with the phosphorylation of ERK1/2. Furthermore, inhibition of the ERK1/2 with PD98059 abolished the 14-3-3 protein up-regulation in PC 12 cells induced by HPP. Conclusion HPP protects PC 12 cells against MPP+ toxicity by up-regulating 14-3-3 protein expression through the ERK1/2 and p38 MAPK signaling pathways.展开更多
Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided ...Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided catalysts. Effects of metal composition,reaction temperature,and hydrogen pressure on conversion and selectivity were investigated systematically. Among various compositions of catalysts,Ni Co/CNT exhibited best performance of guaiacol conversion with higher selectivity towards desired alcohols with higher H/Cefffactor. The reaction pathways of guaiacol in aqueous were proposed based on the product analyzed.Results show that metal composition and temperature have great effects on the conversion of guaiacol and the yields of desired products.展开更多
An effective catalytic transfer hydrogenation (CTH) process of bio-based levulinate esters into γ-valerolactone (GVL) was explored over ternary Cu/ZnO/Al2O3 catalyst which was prepared by coprecipitation method and c...An effective catalytic transfer hydrogenation (CTH) process of bio-based levulinate esters into γ-valerolactone (GVL) was explored over ternary Cu/ZnO/Al2O3 catalyst which was prepared by coprecipitation method and could be sustainably used. As a result, quantitative conversion of ethyl levulinate (EL) and 99.0% yield of GVL were obtained in the CTH process using i-PrOH as hydrogen donor. The Cu/ZnO/Al2O3 catalyst with high-surface-area could be reused at least four times without the loss of catalytic activity. Furthermore, the structure and properties of Cu/ZnO/Al2O3 catalyst was characterized through XRD, BET, SEM, TEM and H2-TPR. Also, the influence of different support oxides and calcination temperatures was investigated.展开更多
Hydrogenation modification is one of the most important ways to produce high-quality petroleum resin. The col- orless C9 petroleum resin (CgPR) was obtained by two-stage catalytic hydrogenation over NiWS/?-A1203 ca...Hydrogenation modification is one of the most important ways to produce high-quality petroleum resin. The col- orless C9 petroleum resin (CgPR) was obtained by two-stage catalytic hydrogenation over NiWS/?-A1203 catalyst and PdRu/ y-A1203 catalyst connected in series. Via the hydrogenation reaction, aromatic rings in C9PR were converted to alicyclic rings, and its color was reduced from Gardner color grade No. 11 to Gardner color grade No. 0. The optimum Ni/W atomic ratio was found to be close to 0.23, while the optimum Pd/Ru atomic ratio was close to 3.80. The TEM results showed that the morphology and size of sulfide or metal particles of the two kinds of catalysts remained almost unchanged after the reac- tion was carried our for 1 204 hours, attesting to their good catalytic stability.展开更多
A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1...A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline and 3,5-dimethyl-1H-pyrazole as ligands, and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic system, space group P21/c with a = 13.765(2), b = 17.044(3), c = 10.9044(16), β= 97.112(2)°, V = 2538.5(6)3, Z = 4, C22H24BrClCuN6O5, Mr = 631.37, Dc = 1.652 g/cm3, F(000) = 1276 and μ= 2.585 mm-1. In the crystal, DPP functions as a tridentate ligand and CuII ions assume a distorted square pyramidal geometry with Br atom lying on the apex, and at the same time, there is π-π stacking between adjacent complexes, which deals with two 1,10-phenanthroline plane rings. In addition to the π-π stacking, there are C-H···Br non-classic hydrogen bonds between adjacent complexes. The theoretical calculations reveal that the π-π stacking and C-H···Br non-classic hydrogen bond result in a weak anti-ferromagnetic interaction with 2J = -5.34 cm-1 and a weak ferromagnetic 2J = 5.92 cm-1, respectively. The magnetic coupling sign from the π-π stacking could be explained with McConnell I spin-polarization mechanism.展开更多
Enantioselective hydrogenation of ethyl 2-oxo-4-phenylbutyrate to ethyl (R)-2-hydroxy-4-phenyl- bu- tyrate on Pt/γ-Al2O3 modified by 10,11-dihydrocinchonidine was studied by investigating the influences of the amou...Enantioselective hydrogenation of ethyl 2-oxo-4-phenylbutyrate to ethyl (R)-2-hydroxy-4-phenyl- bu- tyrate on Pt/γ-Al2O3 modified by 10,11-dihydrocinchonidine was studied by investigating the influences of the amount of modifier, initial concentration of reactant, pressure and temperature on conversion and enantiometric excess in a stirred autoclave and the effects of the liquid velocity, gas velocity, modifier concentration and various catalytic beds in a trickle-bed reactor. The maximum optical yields were about 50% and 60% in the two types of reactors, respectively. It was assumed that the total hydrogenation rate included the reaction rates over the unmodified and modified active sites on platinum surface and a kinetic model, which fitted the experimental data well in autoclave, was obtained. A simplified plug-flow model was proposed to describe the bed average efficiency of trickle-bed reactor.展开更多
Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from ...Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from low efficiencies.In this article,we report a tractable approach to modifying g-C3N4 with vanadyl phthalocyanine(VOPc/CN)for efficient visible-light-driven hydrogen production.A non-covalent VOPc/CN hybrid photocatalyst formed viaπ-πstacking interactions between the two components,as confirmed by analysis of UV-vis absorption spectra.The VOPc/CN hybrid photocatalyst shows excellent visible-light-driven photocatalytic performance and good stability.Under optimal conditions,the corresponding H2 evolution rate is nearly 6 times higher than that of pure g-C3N4.The role of VOPc in promoting hydrogen evolution activity was to extend the visible light absorption range and prevent the recombination of photoexcited electron-hole pairs effectively.It is expected that this facile modification method could be a new inspiration for the rational design and exploration of g-C3N4-based hybrid systems with strong light absorption and high-efficiency carrier separation.展开更多
Asymmetric hydrogenation of (6-methoxyl-2-naphthyl)-2-acrylic acid catalyzed by cinchona modified Pd(0)-a-FeOOH was reported and ee抯 of (S)-(+)-2-(6′-methoxyl-2-naphthyl) propionic acid ((S)-(+)-naproxen) up to 98% ...Asymmetric hydrogenation of (6-methoxyl-2-naphthyl)-2-acrylic acid catalyzed by cinchona modified Pd(0)-a-FeOOH was reported and ee抯 of (S)-(+)-2-(6′-methoxyl-2-naphthyl) propionic acid ((S)-(+)-naproxen) up to 98% was achieved firstly.展开更多
A new coordination polymer, {[Cd(OPY)(tdc)(HO)]·H2 O}n(OPY = 4,4?-(oxybis(4,1-phenylene))dipyridine, H2 tdc = thiophene-2,5-dicarboxylic acid), has been synthesized hydrothermally based on a V-shaped ligand OPY. ...A new coordination polymer, {[Cd(OPY)(tdc)(HO)]·H2 O}n(OPY = 4,4?-(oxybis(4,1-phenylene))dipyridine, H2 tdc = thiophene-2,5-dicarboxylic acid), has been synthesized hydrothermally based on a V-shaped ligand OPY. The structure was fully characterized by elemental analysis, FT-IR spectroscopy, and X-ray single-crystal diffraction analysis. In1, two OPY ligands and one water molecule acted as terminal ligands coordinating to Cdcation to form [Cd(OPY)HO]units, which are then linked by tdc2-ligands to generate a one-dimensional chain. Every two adjacent chains linked by extensive O–H···O hydrogen bonds constitute one-dimensional double-chains, and such chains are extended into two-dimensional layers via O–H···N hydrogen bonds. These layers are further connected to form a three-dimensional supramolecular architecture via π-π stacking interactions. In addition, the thermal stability and solid state fluorescence property of 1 were also investigated.展开更多
Fifteen novel 2-(3-oxobenzo[d]isothiazol-2(3H)-yl)ethyl benzoates were synthesi- zed by the condensation of 2-(2-hydroxyethyl)benzo[d]isothiazol-3(2H)-one with substituted benzoic acids in dichloromethane. All...Fifteen novel 2-(3-oxobenzo[d]isothiazol-2(3H)-yl)ethyl benzoates were synthesi- zed by the condensation of 2-(2-hydroxyethyl)benzo[d]isothiazol-3(2H)-one with substituted benzoic acids in dichloromethane. All the compounds were characterized by elemental analysis, IR, ESI-MS and 1H NMR. The crystal structures for 2-(2-hydroxyethyl)benzo[d]isothiazol-3(2H)-one (2) and 2-(3-oxobenzo[d]isothiazol-2(3H)-yl)ethyl 2-methoxybenzoate (30) have been determined by X-ray crystal structure analysis. Compound 2 (C9H9NO2S) crystallizes in the monoclinic system, space group Pn with a = 10.552(3), b = 7.849(2), c = 10.765(4) A, β = 103.128(4)°, V= 868.3(5) A3, Mr = 195.24, Dc = 1.493 Mg.m-3, μ = 0.33 mm-1, F(000) = 408, Z = 4, R= 0.0314 and wR= 0.0628. Compound 30 (C17H15NO4S) crystallizes in the triclinic system, space group P1 with a = 8.028(2), b = 9.300(2), c = 10.430(3)A, V= 752.1(3)A3, Mr = 329.36, D,= 1.454 Mg.m-3, p = 0.24 mm-1, F(000) = 344, Z = 2, R = 0.0377 and wR = 0.0904. The preliminary biological test indicated that the title compounds show better growth inhibitory activity against the gram-positive bacteria than the gram-negative bacteria.展开更多
A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing th...A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing the experiment data,the results show that the dye wastewater’s organic matter is removed greatly after be-ing treated by this new kind of bio-fluid bed.On the other hand,the removal efficiency of chromaticity of展开更多
文摘Global crises, notably climate shocks, degraded ecosystems, and growing energy demand, enforce sustainable production and consumption pathways. A circular bioeconomy offers the opportunities to actualize resource and eco-efficiency enhancement, valorization of waste streams, reduction of fossil energy and greenhouse gas (GHG) emissions. Albeit biomass resources are a potential feedstock for bio-hydrogen (bio-H2) production, Ghana’s agricultural residues are not fully utilized. This paper examines the economic and environmental impact of bio-H2 electricity generation using agricultural residues in Ghana. The bio-H2 potential was determined based on biogas steam reforming (BSR). The research highlights that BSR could generate 2617 kt of bio-H2, corresponding to 2.78% of the global hydrogen demand. Yam and maize residues contribute 50.47% of the bio-H2 produced, while millet residues have the most negligible share. A tonne of residues could produce 16.59 kg of bio-H2 and 29.83 kWh of electricity. A total of 4,705.89 GWh of electricity produced could replace the consumption of 21.92% of Ghana’s electricity. The economic viability reveals that electricity cost is $0.174/kWh and has a positive net present value of $2135550609.45 with a benefit-to-cost ratio of 1.26. The fossil diesel displaced is 1421.09 ML, and 3862.55 kt CO2eq of carbon emissions decreased corresponding to an annual reduction potential of 386.26 kt CO2eq. This accounts for reducing 10.26% of Ghana’s GHG emissions. The study demonstrates that hydrogen-based electricity production as an energy transition is a strategic innovation pillar to advance the circular bioeconomy and achieve sustainable development goals.
基金Supported by Research Program Foundation of Science and Technology Commission of Shanghai Municipality (No041612002)
文摘Hydrogen was prepared via catalytic steam reforming of bio-oil which was obtained from fast pyrolysis of biomass in a fluidized bed reactor.Influential factors including temperature,weight hourly space velocity(WHSV) of bio-oil,mass ratio of steam to bio-oil(S/B) as well as catalyst type on hydrogen selectivity and other desirable gas products were investigated.Based on hydrogen in stoichiometric potential and carbon balance in gaseous phase and feed,hydrogen yield and carbon selectivity were examined.The experimental results show that higher temperature favors the hydrogen selectivity by H2 mole fraction in gaseous products stream and it plays an important role in hydrogen yield and carbon selectivity.Higher hydrogen selectivity and yield,and carbon selectivity were obtained at lower bio-oil WHSV.In catalytic steam reforming system a maximum steam concentration value exists,at which hydrogen selectivity and yield,and carbon selectivity keep constant.Through experiments,preferential operation conditions were obtained as follows:temperature 800~850℃,bio-oil WHSV below 3.0 h-1,and mass ratio of steam to bio-oil 10~12.The performance tests indicate that Ni-based catalysts are optional,especially Ni/α-Al2O3 effective in the steam reforming process.
基金supported by the National Hi-tech Research and Development Program of China(863 Program)(2012AA051801)the Fundamenta lResearch Funds for the Central Universities(No.CXZZ13 0112)
文摘A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.
基金supported by the National Natural Science Foundation of China(No.51274066,51304048)the National Key Technology R&D Program of China(No.2013BAA03B03)the National Science Foundation for Post-doctoral Scientists of China(No.2013M541240)
文摘The steam reforming of four bio-oil model compounds(acetic acid,ethanol,acetone and phenol) was investigated over Ni-based catalysts supported on Al2O3 modified by Mg,Ce or Co in this paper.The activation process can improve the catalytic activity with the change of high-valence Ni(Ni2O3,NiO) to low-valence Ni(Ni,NiO).Among these catalysts after activation,the Ce-Ni/Co catalyst showed the best catalytic activity for the steam reforming of all the four model compounds.After long-term experiment at 700°C and the S/C ratio of 9,the Ce-Ni/Co catalyst still maintained excellent stability for the steam reforming of the simulated bio-oil(mixed by the four compounds with the equal masses).With CaO calcinated from calcium acetate as CO2 sorbent,the catalytic steam reforming experiment combined with continuous in situ CO2 adsorption was performed.With the comparison of the case without the adding of CO2 sorbent,the hydrogen concentration was dramatically improved from 74.8% to 92.3%,with the CO2 concentration obviously decreased from 19.90% to 1.88%.
基金supported by the Research Fund from the Ministry of Science and Technology of the People’s Republic of China, 2009ZX10004-502 and 2009ZX10004-709
文摘Objective To evaluate the performance of vaporized hydrogen peroxide (VHP) for the bio-decontamination of the high efficiency particulate air (HEPA) filter unit. Methods Self-made or commercially available bioindicators were placed at designated locations in the HEPA filter unit under VHP fumigation. The spores on coupons were then extracted by 0.5 h submergence in eluent followed by 200- time violent knocks. Results Due to the presence of HEPA filter in the box, spore recovery from coupons placed at the bottom of the filter downstream was significantly higher than that from coupons placed at the other locations. The gap of decontamination efficiency between the top and the bottom of the filter downstream became narrower with the exposure time extended. The decontamination efficiency of the bottom of the filter downstream only improved gently with the injection rate of H202 increased and the decontamination efficiency decreased instead when the injection rate exceeded 2.5 g/min. The commercially available bioindicators were competent to indicate the disinfection efficiency of VHP for the HEPA filter unit. Conclusion The HEPA filter unit is more difficult than common enclosure to decontaminate using VHP fumigation. Complete decontamination can be achieved by extending fumigation time. VHP fumigation can be applied for in-situ biodecontamination of the HEPA filter unit as an alternative method to formaldehyde fumigation.
基金financially supported by the National Natural Science Foundation of China(nos.51702225,21671059,51702218)Jiangsu Youth Science Foundation(no.BK20170336)Program for Changjiang Scholars and Innovative Research Team in University(IRT-17R36).
文摘Transition metal chalcogenides have nowadays garnered burgeoning interest owing to their fascinating electronic and catalytic properties,thus possessing great implications for energy conversion and storage applications.In this regard,their controllable synthesis in a large scale at low cost has readily become a focus of research.Herein we report diatomite-template generic and scalable production of VS2 and other transition metal sulfides targeting emerging energy conversion and storage applications.The conformal growth of VS2over diatomite template would endow them with defect-abundant features.Throughout detailed experimental investigation in combination with theoretical simulation,we reveal that the enriched active sites/sulfur vacancies of thus-derived VS2 architectures would pose positive impacts on the catalytic performance such in electrocatalytic hydrogen evolution reactions.We further show that the favorable electrical conductivity and highly exposed sites of VS2 hold promise for serving as sulfur host in the realm of Li-S batteries.Our work offers new insights into the templated and customized synthesis of defect-rich sulfides in a scalable fashion to benefit multifunctional energy applications.
文摘Series batch experiments were made to investigate the influences of pH and temperature on the activity of acidogenus and acidogenus in glucose-degrading bacteria cultured in an UASB(up-flow anaerobic sludge blanket) reactor for glucose fermentation and hydrogen production. The bacteria exhibited different capability to recover to produce hydrogen at different initial pH and temperature. Hydrogen production, VFA production, COD removal and COD balance were measured at different pH and 20, 37 ℃ respectively with the same glucose and VSS in vials. Results showed that there are different influences on the activity of acidogenic bacteria at varied pH and result in a variety of amount of hydrogen production, specific hydrogen production and VFA production, etc. Through the present study, when nonmalized to the weight of VSS, a maximal biogas and hydrogen production of 1 717 1 ml/g and 870 0 ml/g were obtained when pH equals 9 at 37 ℃ and 679 00 ml/g of biogas, 246 35 ml/g of hydrogen were also got when pH equals 5 at 20 ℃ respectively. The maximal specific hydrogen production (SHA) was 116 56 ml/h,g around 8 of pH value at 37 ℃ and 6 46 ml/h,g around 4 of pH value at 20 ℃, which were obtained by calculating the slope of the accumulated hydrogen gas via time. Butyric acid fermentation was important for hydrogen production. Large quantity of unknown COD was found in the vials when a small quantity of bio-gas was produced, but relative less unknown COD was determined when there was large quantity of hydrogen produced. This revealed a better engineering foreground for application of hydrogen bio-production.
基金the National Natural Science Foundation of China (No. 30570627)
文摘Objective To investigate the protective effects of hydrogen peroxide preconditioning (HPP) on the pheochromocytoma (PC12) cells treated with 1-methyl-4-phenylpyridinium (MPP^+) and to explore the potential mechanisms. Methods The viability and apoptosis of PC 12 cells were determinded by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4′,6′-diamidino-2-phenylindole (DAPI) staining, respectively. The expressions of 14-3-3 protein and phospholylated p38 mitogen-activated protein kinase (MAPK) were determined by Western blot. Enzyme-linked immunosorbent assay (ELISA) was used to measure the activity of extracellular signal-regulated protein kinase 1/2 (ERK1/2). Results The cell viability decreased and the number of apoptotic cells increased dramatically in MPP^+ group compared with that in Control group. HPP induced a significant increase in cell viability and a marked decrease in population of apoptotic cells of the MPP^+- treated PC 12 cells, accompanied with up-regulation of 14-3-3 protein and increase of ERK 1/2 and p38 MAPK activities. The 14-3-3 protein expression was positively correlated with the phosphorylation of ERK1/2. Furthermore, inhibition of the ERK1/2 with PD98059 abolished the 14-3-3 protein up-regulation in PC 12 cells induced by HPP. Conclusion HPP protects PC 12 cells against MPP+ toxicity by up-regulating 14-3-3 protein expression through the ERK1/2 and p38 MAPK signaling pathways.
基金support from the National Hi-tech Research and Development Program of China (863 Program) (2012AA051801)the Fundamental Research Funds for the Central Universities (No.CXZZ13_0112)the Scientific Research Foundation of Graduate School of Southeast University (YBPY1408)
文摘Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided catalysts. Effects of metal composition,reaction temperature,and hydrogen pressure on conversion and selectivity were investigated systematically. Among various compositions of catalysts,Ni Co/CNT exhibited best performance of guaiacol conversion with higher selectivity towards desired alcohols with higher H/Cefffactor. The reaction pathways of guaiacol in aqueous were proposed based on the product analyzed.Results show that metal composition and temperature have great effects on the conversion of guaiacol and the yields of desired products.
基金the financial support from the State Key Program of the National Natural Science Foundation of China(No.21436007)the support from the central laboratory of SESE in SJTU
文摘An effective catalytic transfer hydrogenation (CTH) process of bio-based levulinate esters into γ-valerolactone (GVL) was explored over ternary Cu/ZnO/Al2O3 catalyst which was prepared by coprecipitation method and could be sustainably used. As a result, quantitative conversion of ethyl levulinate (EL) and 99.0% yield of GVL were obtained in the CTH process using i-PrOH as hydrogen donor. The Cu/ZnO/Al2O3 catalyst with high-surface-area could be reused at least four times without the loss of catalytic activity. Furthermore, the structure and properties of Cu/ZnO/Al2O3 catalyst was characterized through XRD, BET, SEM, TEM and H2-TPR. Also, the influence of different support oxides and calcination temperatures was investigated.
基金financially supported by the Scientific Research Fund of Zhejiang Provincial Education Department (Y201018517)
文摘Hydrogenation modification is one of the most important ways to produce high-quality petroleum resin. The col- orless C9 petroleum resin (CgPR) was obtained by two-stage catalytic hydrogenation over NiWS/?-A1203 catalyst and PdRu/ y-A1203 catalyst connected in series. Via the hydrogenation reaction, aromatic rings in C9PR were converted to alicyclic rings, and its color was reduced from Gardner color grade No. 11 to Gardner color grade No. 0. The optimum Ni/W atomic ratio was found to be close to 0.23, while the optimum Pd/Ru atomic ratio was close to 3.80. The TEM results showed that the morphology and size of sulfide or metal particles of the two kinds of catalysts remained almost unchanged after the reac- tion was carried our for 1 204 hours, attesting to their good catalytic stability.
基金supported by the National Natural Science Foundation of China (No. 20971080)the Natural Science Foundation of Shandong Province (No. ZR2009BM026 and ZR2009BL002)
文摘A new mono-nuclear CuII complex [Cu(DPP)(DP)Br](ClO4)H2O (DPP = 2-(3,5- dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline, DP = 3,5-dimethyl-1H-pyrazole) has been syn- thesized with 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1,10-phenanthroline and 3,5-dimethyl-1H-pyrazole as ligands, and its crystal structure was determined by X-ray crystallography. The crystal is of monoclinic system, space group P21/c with a = 13.765(2), b = 17.044(3), c = 10.9044(16), β= 97.112(2)°, V = 2538.5(6)3, Z = 4, C22H24BrClCuN6O5, Mr = 631.37, Dc = 1.652 g/cm3, F(000) = 1276 and μ= 2.585 mm-1. In the crystal, DPP functions as a tridentate ligand and CuII ions assume a distorted square pyramidal geometry with Br atom lying on the apex, and at the same time, there is π-π stacking between adjacent complexes, which deals with two 1,10-phenanthroline plane rings. In addition to the π-π stacking, there are C-H···Br non-classic hydrogen bonds between adjacent complexes. The theoretical calculations reveal that the π-π stacking and C-H···Br non-classic hydrogen bond result in a weak anti-ferromagnetic interaction with 2J = -5.34 cm-1 and a weak ferromagnetic 2J = 5.92 cm-1, respectively. The magnetic coupling sign from the π-π stacking could be explained with McConnell I spin-polarization mechanism.
文摘Enantioselective hydrogenation of ethyl 2-oxo-4-phenylbutyrate to ethyl (R)-2-hydroxy-4-phenyl- bu- tyrate on Pt/γ-Al2O3 modified by 10,11-dihydrocinchonidine was studied by investigating the influences of the amount of modifier, initial concentration of reactant, pressure and temperature on conversion and enantiometric excess in a stirred autoclave and the effects of the liquid velocity, gas velocity, modifier concentration and various catalytic beds in a trickle-bed reactor. The maximum optical yields were about 50% and 60% in the two types of reactors, respectively. It was assumed that the total hydrogenation rate included the reaction rates over the unmodified and modified active sites on platinum surface and a kinetic model, which fitted the experimental data well in autoclave, was obtained. A simplified plug-flow model was proposed to describe the bed average efficiency of trickle-bed reactor.
基金supported by the National Natural Science Foundation of China(51572253,21771171)Scientific Research Grant of Hefei National Synchrotron Radiation Laboratory(UN2017LHJJ)+1 种基金the Fundamental Research Funds for the Central Universitiescooperation between NSFC and Netherlands Organization for Scientific Research(51561135011)~~
文摘Photocatalytic H2 evolution reactions on pristine graphitic carbon nitrides(g-C3N4),as a promising approach for converting solar energy to fuel,are attractive for tackling global energy concerns but still suffer from low efficiencies.In this article,we report a tractable approach to modifying g-C3N4 with vanadyl phthalocyanine(VOPc/CN)for efficient visible-light-driven hydrogen production.A non-covalent VOPc/CN hybrid photocatalyst formed viaπ-πstacking interactions between the two components,as confirmed by analysis of UV-vis absorption spectra.The VOPc/CN hybrid photocatalyst shows excellent visible-light-driven photocatalytic performance and good stability.Under optimal conditions,the corresponding H2 evolution rate is nearly 6 times higher than that of pure g-C3N4.The role of VOPc in promoting hydrogen evolution activity was to extend the visible light absorption range and prevent the recombination of photoexcited electron-hole pairs effectively.It is expected that this facile modification method could be a new inspiration for the rational design and exploration of g-C3N4-based hybrid systems with strong light absorption and high-efficiency carrier separation.
文摘Asymmetric hydrogenation of (6-methoxyl-2-naphthyl)-2-acrylic acid catalyzed by cinchona modified Pd(0)-a-FeOOH was reported and ee抯 of (S)-(+)-2-(6′-methoxyl-2-naphthyl) propionic acid ((S)-(+)-naproxen) up to 98% was achieved firstly.
基金Supported by the National Natural Science Foundation of China(Nos.21361023 and 21461023)
文摘A new coordination polymer, {[Cd(OPY)(tdc)(HO)]·H2 O}n(OPY = 4,4?-(oxybis(4,1-phenylene))dipyridine, H2 tdc = thiophene-2,5-dicarboxylic acid), has been synthesized hydrothermally based on a V-shaped ligand OPY. The structure was fully characterized by elemental analysis, FT-IR spectroscopy, and X-ray single-crystal diffraction analysis. In1, two OPY ligands and one water molecule acted as terminal ligands coordinating to Cdcation to form [Cd(OPY)HO]units, which are then linked by tdc2-ligands to generate a one-dimensional chain. Every two adjacent chains linked by extensive O–H···O hydrogen bonds constitute one-dimensional double-chains, and such chains are extended into two-dimensional layers via O–H···N hydrogen bonds. These layers are further connected to form a three-dimensional supramolecular architecture via π-π stacking interactions. In addition, the thermal stability and solid state fluorescence property of 1 were also investigated.
基金Supported by the National Natural Science Foundation of China (No. 20962007)
文摘Fifteen novel 2-(3-oxobenzo[d]isothiazol-2(3H)-yl)ethyl benzoates were synthesi- zed by the condensation of 2-(2-hydroxyethyl)benzo[d]isothiazol-3(2H)-one with substituted benzoic acids in dichloromethane. All the compounds were characterized by elemental analysis, IR, ESI-MS and 1H NMR. The crystal structures for 2-(2-hydroxyethyl)benzo[d]isothiazol-3(2H)-one (2) and 2-(3-oxobenzo[d]isothiazol-2(3H)-yl)ethyl 2-methoxybenzoate (30) have been determined by X-ray crystal structure analysis. Compound 2 (C9H9NO2S) crystallizes in the monoclinic system, space group Pn with a = 10.552(3), b = 7.849(2), c = 10.765(4) A, β = 103.128(4)°, V= 868.3(5) A3, Mr = 195.24, Dc = 1.493 Mg.m-3, μ = 0.33 mm-1, F(000) = 408, Z = 4, R= 0.0314 and wR= 0.0628. Compound 30 (C17H15NO4S) crystallizes in the triclinic system, space group P1 with a = 8.028(2), b = 9.300(2), c = 10.430(3)A, V= 752.1(3)A3, Mr = 329.36, D,= 1.454 Mg.m-3, p = 0.24 mm-1, F(000) = 344, Z = 2, R = 0.0377 and wR = 0.0904. The preliminary biological test indicated that the title compounds show better growth inhibitory activity against the gram-positive bacteria than the gram-negative bacteria.
文摘A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing the experiment data,the results show that the dye wastewater’s organic matter is removed greatly after be-ing treated by this new kind of bio-fluid bed.On the other hand,the removal efficiency of chromaticity of