The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed int...The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed into useful alternative energy resources. Pyrolysis is one of the technologies for converting biomass into more valuable products, such as bio-oil, bio-char, and syngas. This work investigated the production of bio-oil through batch pyrolysis technology. A fixed bed pyrolyzer was designed and fabricated for bio-oil production. The major components of the system include a fixed bed reactor, a condenser, and a bio-oil collector. The reactor was heated using a cylindrical biomass external heater. The pyrolysis process was carried out in a reactor at a pressure of 1atm and a varying operating temperature of 150˚C, 250˚C, 350˚C to 450˚C for 120 minutes. The mass of 1kg of coconut fiber was used with particle sizes between 2.36 mm - 4.75 mm. The results show that the higher the temperature, the more volume of bio-oil produced, with the highest yield being 39.2%, at 450˚C with a heating rate of 10˚C/min. The Fourier transformation Infrared (FTIR) Spectroscopy analysis was used to analyze the bio-oil components. The obtained bio-oil has a pH of 2.4, a density of 1019.385 kg/m<sup>3</sup>, and a calorific value of 17.5 MJ/kg. The analysis also showed the presence of high-oxygenated compounds;carboxylic acids, phenols, alcohols, and branched oxygenated hydrocarbons as the main compounds present in the bio-oil. The results inferred that the liquid product could be bestowed as an alternative resource for polycarbonate material production.展开更多
In present investigation, various bio-molecular parameters i.e. glycogen, protein, amino acid, DNA, RNA and lipid, were determined for evaluation of anti-termite efficacy of Tagetes erecta essential oil based combinat...In present investigation, various bio-molecular parameters i.e. glycogen, protein, amino acid, DNA, RNA and lipid, were determined for evaluation of anti-termite efficacy of Tagetes erecta essential oil based combinatorial formulations against Indian white termite Odontotermes obesus. For this purpose, 40% and 80% of 24 hrs of LD50 values of various formulations were provided for treatment of termite workers. Observations were taken at 4 hrs time interval up to 16 hrs to know inhibitory activity of these combinatorial mixtures on termite species Odontotermes obesus. Significant (p > 0.05) alterations were observed in the level above mentioned bio-molecules when termites were treated with different combinatorial essential oils ingredients of Citrus maxima. Combinatorial mixtures of Tagetes erecta essential oils have shown synergistic activity against termites. This study will provide an overall sustainable way to termite control in crop field, gardens and houses. It also suggests use of essential oils as better alternative of synthetic termiticides as these are safer for environmental and human health.展开更多
Essential oils are better alternative for synthetic termiticides with the inherent resistance by insects, environmental and health effects on humans. In present investigation, various bio-molecules i.e. glycogen, prot...Essential oils are better alternative for synthetic termiticides with the inherent resistance by insects, environmental and health effects on humans. In present investigation, various bio-molecules i.e. glycogen, protein, amino acid, DNA, RNA and lipid were evaluated to determine the anti-termite efficacy of Citrus maxima essential oil based combinatorial formulations against Indian white termite Odontotermes obesus. For this purpose, termites were treated topically with 40% and 80% of 24 hr LD<sub>50</sub> values of various combinatorial formulations. A significant (p > 0.05) alteration was noted in all the above biomolecules at various time intervals. Both dose response and time period was found important in physiological alteration in levels of various bio-molecules. Combinatorial mixtures of Citrus essential oils have shown synergistic activity against termites. The research outcomes of present investigation would help to open sustainable way to termite control in crop field, gardens and houses.展开更多
A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to...A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.展开更多
Hydrogen was prepared via catalytic steam reforming of bio-oil which was obtained from fast pyrolysis of biomass in a fluidized bed reactor.Influential factors including temperature,weight hourly space velocity(WHSV) ...Hydrogen was prepared via catalytic steam reforming of bio-oil which was obtained from fast pyrolysis of biomass in a fluidized bed reactor.Influential factors including temperature,weight hourly space velocity(WHSV) of bio-oil,mass ratio of steam to bio-oil(S/B) as well as catalyst type on hydrogen selectivity and other desirable gas products were investigated.Based on hydrogen in stoichiometric potential and carbon balance in gaseous phase and feed,hydrogen yield and carbon selectivity were examined.The experimental results show that higher temperature favors the hydrogen selectivity by H2 mole fraction in gaseous products stream and it plays an important role in hydrogen yield and carbon selectivity.Higher hydrogen selectivity and yield,and carbon selectivity were obtained at lower bio-oil WHSV.In catalytic steam reforming system a maximum steam concentration value exists,at which hydrogen selectivity and yield,and carbon selectivity keep constant.Through experiments,preferential operation conditions were obtained as follows:temperature 800~850℃,bio-oil WHSV below 3.0 h-1,and mass ratio of steam to bio-oil 10~12.The performance tests indicate that Ni-based catalysts are optional,especially Ni/α-Al2O3 effective in the steam reforming process.展开更多
The steam reforming of four bio-oil model compounds(acetic acid,ethanol,acetone and phenol) was investigated over Ni-based catalysts supported on Al2O3 modified by Mg,Ce or Co in this paper.The activation process ca...The steam reforming of four bio-oil model compounds(acetic acid,ethanol,acetone and phenol) was investigated over Ni-based catalysts supported on Al2O3 modified by Mg,Ce or Co in this paper.The activation process can improve the catalytic activity with the change of high-valence Ni(Ni2O3,NiO) to low-valence Ni(Ni,NiO).Among these catalysts after activation,the Ce-Ni/Co catalyst showed the best catalytic activity for the steam reforming of all the four model compounds.After long-term experiment at 700°C and the S/C ratio of 9,the Ce-Ni/Co catalyst still maintained excellent stability for the steam reforming of the simulated bio-oil(mixed by the four compounds with the equal masses).With CaO calcinated from calcium acetate as CO2 sorbent,the catalytic steam reforming experiment combined with continuous in situ CO2 adsorption was performed.With the comparison of the case without the adding of CO2 sorbent,the hydrogen concentration was dramatically improved from 74.8% to 92.3%,with the CO2 concentration obviously decreased from 19.90% to 1.88%.展开更多
Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided ...Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided catalysts. Effects of metal composition,reaction temperature,and hydrogen pressure on conversion and selectivity were investigated systematically. Among various compositions of catalysts,Ni Co/CNT exhibited best performance of guaiacol conversion with higher selectivity towards desired alcohols with higher H/Cefffactor. The reaction pathways of guaiacol in aqueous were proposed based on the product analyzed.Results show that metal composition and temperature have great effects on the conversion of guaiacol and the yields of desired products.展开更多
A model is proposed to describe soot formation and oxidation during bio-oil gasification.It is based on the description of bio-oil heating,devolatilization,reforming of gases and conversion of both char and soot solid...A model is proposed to describe soot formation and oxidation during bio-oil gasification.It is based on the description of bio-oil heating,devolatilization,reforming of gases and conversion of both char and soot solids.Detailed chemistry (159 species and 773 reactions) is used in the gas phase.Soot production is described by a single reaction based on C2H2species concentration and three heterogeneous soot oxidation reactions.To support the validation of the model,three sets of experiments were carried out in a lab-scale Entrained Flow Reactor (EFR) equipped with soot quantification device.The temperature was varied from 1000 to 1400 C and three gaseous atmospheres were considered:default of steam,large excess of steam(H2O/C=8),and the presence of oxygen in the O/C range of 0.075–0.5.The model is shown to accurately describe the evolution of the concentration of the main gas species and to satisfactorily describe the soot concentration under the three atmospheres using a single set of identified kinetic parameters.Thanks to this model the contribution of different mechanisms involved in soot formation and oxidation in various situations can be assessed.展开更多
Fractional pyrolysis and one-step pyrolysis of natural algae Cyanobacteria from Taihu Lake were comparatively studied from 200 to 500 ℃. One-step pyrolysis produced bio-oil with complex composition and low high heati...Fractional pyrolysis and one-step pyrolysis of natural algae Cyanobacteria from Taihu Lake were comparatively studied from 200 to 500 ℃. One-step pyrolysis produced bio-oil with complex composition and low high heating value (HHV〈30.9 MJ/kg). Fractional pyrolysis separated the degradation of different components in Cyanobacteria and improved the selectivity to products in bio-oil. That is, acids at 200 ℃, amides and acids at 300 ℃, phenols and nitriles at 400 ℃, and phenols at 500 ℃, were got as main products, respectively. HZSM-5 could promote the dehydration, cracking and aromatization of pyrolytic intermediates in fractional pyrolysis. At optimal HZSM-5 catalyst dosage of 1.0 g, the selectivity to products and the quality of bio-oil were improved obviously. The main products in bio-oil changed to nitriles (47.2%) at 300 ℃, indoles (51.3%) and phenols (36.3%) at 400 ℃. The oxygen content was reduced to 7.2 wt% and 9.4 wt%, and the HHV was raised to 38.1 and 37.3 MJ/kg at 300 and 400 ℃, respectively. Fractional catalytic pyrolysis was proposed to be an efficient method not only to provide a potential solution for alleviating environmental pressure from water blooms, but also to improve the selectivity to products and obtain high quality bio-oil.展开更多
Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biom...Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biomass into a more valuable product which is bio-oil. Bio-oil is a condensed liquid from the vapor phase of biomass pyrolysis such as coconut shells and coffee shells. Biomass composition consisting of hemicellulose, cellulose, and lignin will oxidize to phenol which is the main content in bio-oil. The total phenolic compounds contained in bio-oil are 47.03%(coconut shell) and 45%(coffee shell). The content of phenol compounds in corrosive bio-oils still quite high, the use of this bio-oil directly will cause various difficulties in the combustion system due to high viscosity, low calorific value, corrosivity, and instability. Phenol compounds have some benefits as one of the compounds for floor cleaners and disinfectants which are contained in bio-oil.The correlation between experimental data and calculations shows that the UNIQUAC Functional-group Activity Coefficients(UNIFAC) equilibrium model can be used to predict the liquid–liquid equilibrium in the phenol extraction process of the coconut shell pyrolysis bio-oil. While the Non-Random Two Liquid(NRTL) equilibrium model can be used to predict liquid–liquid equilibrium in the extraction process of phenol from bio-oil pyrolysis of coffee shells.展开更多
Pyrolytic lignin, the water-insoluble fraction in bio-oil, often shows a high content and has strong intermolecular interactions with other compounds in bio-oil. In order to obtain pure pyrolytic lignin and facilitate...Pyrolytic lignin, the water-insoluble fraction in bio-oil, often shows a high content and has strong intermolecular interactions with other compounds in bio-oil. In order to obtain pure pyrolytic lignin and facilitate the utilization of aqueous phase obtained from water extraction of bio-oil, methanol–water extraction method was employed to further separate the bio-oil water-insoluble phase in this paper. Different technologies, including Fourier transform infrared spectroscopy, gel permeation chromatography, and nuclear magnetic resonance, were adopted to characterize the structures of pyrolytic lignins with different activities obtained through this method. Both the heating value and the polymerization degree of high-molecular-weight pyrolytic lignin were higher than those of low-molecular-weight pyrolytic lignin. The molecular weight distribution of high-molecular-weight pyrolytic lignin was relatively wider, among which the contents of dimers to pentamers all accounted for 12% –18%,while the low-molecular-weight pyrolytic lignin mainly consisted of trimers(75.38%). The pyrolytic lignins had similar basic structures, both of which contained syringyl and guaiacyl units, whereas the low-molecular-weight pyrolytic lignin had more abundant syringyl units, reactive carbonyl groups and hydroxyl groups. Meanwhile,thermogravimetric study revealed that the final char residue yield of low-molecular-weight pyrolytic lignin was lower than that of high-molecular-weight pyrolytic lignin.展开更多
This study investigated the effects of torrefaction with Mg(OH)2 on the properties of bio-oil formed from the microwave-assisted catalytic fast co-pyrolysis of straw stalk and soapstock.The effects of torrefaction tem...This study investigated the effects of torrefaction with Mg(OH)2 on the properties of bio-oil formed from the microwave-assisted catalytic fast co-pyrolysis of straw stalk and soapstock.The effects of torrefaction temperature and residence time on the yield and composition of bio-oil were discussed.Results showed that the torrefaction temperature and residence time remarkably influenced the yield and composition of bio-oil.With the increase in temperature and time,the bio-oil yield and the proportion of oxygen-containing compounds decreased,while the proportion of aromatic compounds increased.When the feedstocks were subject to torrefaction reaction for 20 min at 260°C,the proportion of oxygen-containing compounds decreased from 29.89%to 16.49%.Meanwhile,Mg(OH)2 could render the deoxidization function of torrefaction process increasingly noticeable.The proportion of the oxygen-containing compounds reached a minimum(14.41%),when the biomass-to-Mg(OH)2 ratio was 1:1.展开更多
Supercritical CO2 extraction was employed to separate simulated and real bio-oils. Effects of extraction pressure, temperature and adsorbents on distribution coefficient (or enrichment coefficient) of five representat...Supercritical CO2 extraction was employed to separate simulated and real bio-oils. Effects of extraction pressure, temperature and adsorbents on distribution coefficient (or enrichment coefficient) of five representative compounds were investigated using a simulated bio-oil, which was composed of acetic acid (AC), propanoic acid (PA), furfural (FR), acetylacetone (AA) and 2-methoxyphenol (MP). The distribution coefficients of AA, FR and MP between super-critical CO2 phase and liquid phase were bigger than 1.5, while those of AC and PA characteristic of relatively strong polarity were less than 1. Temperature and pressure also had impacts on the distribution coefficients of AA, FR and MP, especially remarkable for AA. The extraction of simulated bio-oil spiked on three adsorbents shows that adsorbents influence extraction efficiency and selectivity by changing intermolecular forces. High extraction pressure and relative low temperature are beneficial to reduce the water content in the extract. In addition, the feasibility of supercritical CO2 extraction of real bio-oil was examined. After extraction in the extraction fraction total ketones increased from 14.1% to 21.15~25.40%, phenols from 10.74% to 31.32~41.25%, and aldehydes from 1.92% to 3.95~8.46%, while the acids significantly dropped from 28.15% to 6.92~12.32%, and water from 35.90% to 6.64~4.90%. In view of extraction efficiency, the optimal extraction temperature was determined to be 55℃. Extraction efficiency of the real bio-oil increased with rising pressure. The maximal extraction efficiency of real bio-oil on water-free basis could reach to 88.6%. After scCO2 extraction, the calorific value and stability of the extract fraction evidently increased and the acidity slight decreased with nearly 100% volatility below 140℃, suggesting potentially applicable as substitute for engine fuel.展开更多
Sewage sludge is an unavoidable secondary pollution produced in the process of sewage treatment. At present traditional methods of treating sludge (e.g. landfill, incineration or land application) have some disadvanta...Sewage sludge is an unavoidable secondary pollution produced in the process of sewage treatment. At present traditional methods of treating sludge (e.g. landfill, incineration or land application) have some disadvantages and shortages. Direct thermochemical liquefaction of sludge is a new treatment method, which has the advantage of both treatment and energy recovery. Research progress and application prospect of sludge liquefaction technology are widely reported, typical liquefaction process with bio-oil production and its main influencing factors are introduced. Besides, the devel- opment of this process is illustrated, and resource and energy recovery of this technology are pointed out to be the ten- dency of sludge treatment in the future.展开更多
In this work,we report for the first time the in-situ catalytic pyrolysis of Pavlova sp.microalgae,which has been performed in a fixed-bed reactor in presence of Ce/Al2O3-based catalysts.The effects of pyrolysis param...In this work,we report for the first time the in-situ catalytic pyrolysis of Pavlova sp.microalgae,which has been performed in a fixed-bed reactor in presence of Ce/Al2O3-based catalysts.The effects of pyrolysis parameters,such as temperature and catalyst were studied on the products yield distribution and biooil composition,among others.Results showed that all catalysts increased the bio-oil yield with respect to the non-catalytic runs and reduced the O/C ratio from 0.69(Pavlova sp.)to 0.1–0.15,which is close to that of crude oil.In terms of bio-oil oxygen content,Mg Ce/Al2O3presented the best performance with a reduction of more than 30%,from 14.1 to 9.8 wt%,of the oxygen concentration in comparison with thermal pyrolysis.However,Ni Ce/Al2O3gave rise to the highest aliphatics/aromatics fractions.The elemental and gas analysis indicates that N was partially removed from the catalytic bio-oils in the gas phase in forms of NH3and HCN.展开更多
Two series of bimetallic Ni-Co catalysts and corresponding monometallic catalysts with ca. 20 wt% metal loading were evaluated in hydrodeoxygenation (HDO) of phenol as a model compound for bio-oil. The bimetallic cata...Two series of bimetallic Ni-Co catalysts and corresponding monometallic catalysts with ca. 20 wt% metal loading were evaluated in hydrodeoxygenation (HDO) of phenol as a model compound for bio-oil. The bimetallic catalysts outperformed the corresponding monometallic catalyst in terms of conversion and cyclohexane selectivity. This could be attributed to the formation of Ni-Co alloy, which caused a decrease in metal particle size and stabilized Ni active sites in the near surface region. The balanced combination of formed Ni-Co alloy with acidity from supports allowed performing all individual steps in the reaction network toward desired products at high rate. Consequently, the two best-performing catalysts were tested in HDO of wood based bio-oil, showing that the bimetallic catalyst 10Ni10Co/HZSM-5 was more effective than 20Ni/HZSM-5 in terms of degree of deoxygenation and upgraded bio-oil yield. These findings might open an opportunity for development of a novel cheap but effective catalyst for a key step in the process chain from biomass to renewable liquid fuels.展开更多
Hydrothermal liquefaction (HTL) processing of lignocellulosic biomass to bio-oil produces aqueous co-product (AP) which contains significant (~40 wt%) carbon from the original feedstock. This study evaluates macro and...Hydrothermal liquefaction (HTL) processing of lignocellulosic biomass to bio-oil produces aqueous co-product (AP) which contains significant (~40 wt%) carbon from the original feedstock. This study evaluates macro and micronutrient composition of AP from Ca(NO3)2 catalyzed HTL of cardboard (CbAP) to cultivate bacteria. HPLC, GC-MS and ICP-MS analysis of CbAP revealed presence of C1-C3 carboxylic acids, aldehydes, ketones, phenolics, sub-optimal phosphorous and bio-incompatible levels of calcium. Dilutions (5 - 80 vol%) of detoxified CbAP (DTP-CbAP) in potassium phosphate buffer (pH 7.2) were supplemented with 50 mg·mL-1 of yeast extract and inoculated with metabolically versatile Enterobacter species. The cultures were incubated at 25°C under aerobic conditions. A maximum 9.4 fold increase in the dry cell weight was observed in DTP-CbAP-15 vol%. Co-liquefaction of the bacteria with cardboard in 1:1 and 1:3 weight ratios each produced ~33% more total bio-oil. These had higher HHVs of 34.11 and 31.05 MJ·kg-1, respectively compared with bio-oil from cardboard feedstock alone which had HHV of 30.61 MJ·kg-1. The study highlights the challenges in cultivating microbes in AP from HTL of lignocellulosic biomass (LCB) and the possibility to integrate microbial capture and recycle of the AP carbon for enhanced bio-oil production and quality.展开更多
The pyrolysis of eucalyptus wood was carried out in a batch reactor to optimize the yield of bio-oil.Effect of various parameters like feed(particle) size,temperature,presence of catalyst and heating rate on the yield...The pyrolysis of eucalyptus wood was carried out in a batch reactor to optimize the yield of bio-oil.Effect of various parameters like feed(particle) size,temperature,presence of catalyst and heating rate on the yield of bio-oil was investigated.The optimum conditions for high yield of bio-oil are for the particle size 2 mm^5 mm(average l/d=12.84/2.03 mm) at 450 ℃ in high heating rate.The reaction kinetics and the quality of bio-oil produced are independent of the presence of different catalysts like mordenite,kaoline clay,fly ash and silica alumina.The physical properties like odour,colour,PH,viscosity,heating value were determined.The FT-IR analysis of bio-oil indicates the presence of different functional groups such as monomeric alcohol,phenol,ketones,aldehydes,carboxylic acid,amines,and nitro compounds.The composition of the bio-oil at different conditions was analyzed using GC-MS and found that the components are temperature dependent but independent of catalysts used.展开更多
Renewable hydrocarbons refer to fuels consisting of hydrocarbons of 10 to 20 carbon atoms, produced from biomass, and free of oxygen. Hydrocracking, hydrodeoxygenation and hydrotreatment processes for the production o...Renewable hydrocarbons refer to fuels consisting of hydrocarbons of 10 to 20 carbon atoms, produced from biomass, and free of oxygen. Hydrocracking, hydrodeoxygenation and hydrotreatment processes for the production of renewable hydrocarbons are described in the literature. Microalgae have been targeted in recent years to synthesize biomass that can be used in the production of biofuels, such as renewable hydrocarbons, biodiesel or ethanol second generation. In this context the lineage Monoraphidium sp. was selected from previous ecophysiological studies and its potential to produce lipids to develop this research related with the extraction of the bio-oil of the wet biomass of Monoraphidium sp. through heat treatment. Consecutively the bio-oil was used as raw material for the production of hydrocarbons through hydrocracking and hydrodeoxygenation processes (HDO) as: decarbonylation, decarboxylation, dehydratation, with in situ production of hydrogen from liquid-phase reforming of glycerol. The reactions were carried out under two different temperature conditions, 350°C and 300°C, respectively, for 1 h and using ruthenium alumina catalyst (Ru/Al2O3). The results showed the bio-oil processing route at a temperature of 350°C promising for the production of hydrocarbons achieving a conversion of 81.54%.展开更多
A novel system of fast pyrolysis and vapour quenching was developed at pilot scale to obtain bio-oil from biomass. The system uses three-stage of interconnected fluidized bed reactors that continuously circulate silic...A novel system of fast pyrolysis and vapour quenching was developed at pilot scale to obtain bio-oil from biomass. The system uses three-stage of interconnected fluidized bed reactors that continuously circulate silica sand from an internal pyrolysis reactor to a second external annular reactor for char burning, which generates most of the heat required by the pyrolysis reactor, and a third sand-preheating reactor that burns non-condensable pyrolysis gas. The hot vapours, after high temperature cleaning, are quenched in a flash cooling system. The process generates up to 62% of bio-oil, 25% of char and 13% of non-condensable gas. The heat requirements for the total system are provided by burning part of the char and non-condensable gases generated in the pyrolysis step and by preheating the fluidizing gas for the pyrolysis reactor.展开更多
文摘The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed into useful alternative energy resources. Pyrolysis is one of the technologies for converting biomass into more valuable products, such as bio-oil, bio-char, and syngas. This work investigated the production of bio-oil through batch pyrolysis technology. A fixed bed pyrolyzer was designed and fabricated for bio-oil production. The major components of the system include a fixed bed reactor, a condenser, and a bio-oil collector. The reactor was heated using a cylindrical biomass external heater. The pyrolysis process was carried out in a reactor at a pressure of 1atm and a varying operating temperature of 150˚C, 250˚C, 350˚C to 450˚C for 120 minutes. The mass of 1kg of coconut fiber was used with particle sizes between 2.36 mm - 4.75 mm. The results show that the higher the temperature, the more volume of bio-oil produced, with the highest yield being 39.2%, at 450˚C with a heating rate of 10˚C/min. The Fourier transformation Infrared (FTIR) Spectroscopy analysis was used to analyze the bio-oil components. The obtained bio-oil has a pH of 2.4, a density of 1019.385 kg/m<sup>3</sup>, and a calorific value of 17.5 MJ/kg. The analysis also showed the presence of high-oxygenated compounds;carboxylic acids, phenols, alcohols, and branched oxygenated hydrocarbons as the main compounds present in the bio-oil. The results inferred that the liquid product could be bestowed as an alternative resource for polycarbonate material production.
文摘In present investigation, various bio-molecular parameters i.e. glycogen, protein, amino acid, DNA, RNA and lipid, were determined for evaluation of anti-termite efficacy of Tagetes erecta essential oil based combinatorial formulations against Indian white termite Odontotermes obesus. For this purpose, 40% and 80% of 24 hrs of LD50 values of various formulations were provided for treatment of termite workers. Observations were taken at 4 hrs time interval up to 16 hrs to know inhibitory activity of these combinatorial mixtures on termite species Odontotermes obesus. Significant (p > 0.05) alterations were observed in the level above mentioned bio-molecules when termites were treated with different combinatorial essential oils ingredients of Citrus maxima. Combinatorial mixtures of Tagetes erecta essential oils have shown synergistic activity against termites. This study will provide an overall sustainable way to termite control in crop field, gardens and houses. It also suggests use of essential oils as better alternative of synthetic termiticides as these are safer for environmental and human health.
文摘Essential oils are better alternative for synthetic termiticides with the inherent resistance by insects, environmental and health effects on humans. In present investigation, various bio-molecules i.e. glycogen, protein, amino acid, DNA, RNA and lipid were evaluated to determine the anti-termite efficacy of Citrus maxima essential oil based combinatorial formulations against Indian white termite Odontotermes obesus. For this purpose, termites were treated topically with 40% and 80% of 24 hr LD<sub>50</sub> values of various combinatorial formulations. A significant (p > 0.05) alteration was noted in all the above biomolecules at various time intervals. Both dose response and time period was found important in physiological alteration in levels of various bio-molecules. Combinatorial mixtures of Citrus essential oils have shown synergistic activity against termites. The research outcomes of present investigation would help to open sustainable way to termite control in crop field, gardens and houses.
基金supported by the National Hi-tech Research and Development Program of China(863 Program)(2012AA051801)the Fundamenta lResearch Funds for the Central Universities(No.CXZZ13 0112)
文摘A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.
基金Supported by Research Program Foundation of Science and Technology Commission of Shanghai Municipality (No041612002)
文摘Hydrogen was prepared via catalytic steam reforming of bio-oil which was obtained from fast pyrolysis of biomass in a fluidized bed reactor.Influential factors including temperature,weight hourly space velocity(WHSV) of bio-oil,mass ratio of steam to bio-oil(S/B) as well as catalyst type on hydrogen selectivity and other desirable gas products were investigated.Based on hydrogen in stoichiometric potential and carbon balance in gaseous phase and feed,hydrogen yield and carbon selectivity were examined.The experimental results show that higher temperature favors the hydrogen selectivity by H2 mole fraction in gaseous products stream and it plays an important role in hydrogen yield and carbon selectivity.Higher hydrogen selectivity and yield,and carbon selectivity were obtained at lower bio-oil WHSV.In catalytic steam reforming system a maximum steam concentration value exists,at which hydrogen selectivity and yield,and carbon selectivity keep constant.Through experiments,preferential operation conditions were obtained as follows:temperature 800~850℃,bio-oil WHSV below 3.0 h-1,and mass ratio of steam to bio-oil 10~12.The performance tests indicate that Ni-based catalysts are optional,especially Ni/α-Al2O3 effective in the steam reforming process.
基金supported by the National Natural Science Foundation of China(No.51274066,51304048)the National Key Technology R&D Program of China(No.2013BAA03B03)the National Science Foundation for Post-doctoral Scientists of China(No.2013M541240)
文摘The steam reforming of four bio-oil model compounds(acetic acid,ethanol,acetone and phenol) was investigated over Ni-based catalysts supported on Al2O3 modified by Mg,Ce or Co in this paper.The activation process can improve the catalytic activity with the change of high-valence Ni(Ni2O3,NiO) to low-valence Ni(Ni,NiO).Among these catalysts after activation,the Ce-Ni/Co catalyst showed the best catalytic activity for the steam reforming of all the four model compounds.After long-term experiment at 700°C and the S/C ratio of 9,the Ce-Ni/Co catalyst still maintained excellent stability for the steam reforming of the simulated bio-oil(mixed by the four compounds with the equal masses).With CaO calcinated from calcium acetate as CO2 sorbent,the catalytic steam reforming experiment combined with continuous in situ CO2 adsorption was performed.With the comparison of the case without the adding of CO2 sorbent,the hydrogen concentration was dramatically improved from 74.8% to 92.3%,with the CO2 concentration obviously decreased from 19.90% to 1.88%.
基金support from the National Hi-tech Research and Development Program of China (863 Program) (2012AA051801)the Fundamental Research Funds for the Central Universities (No.CXZZ13_0112)the Scientific Research Foundation of Graduate School of Southeast University (YBPY1408)
文摘Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided catalysts. Effects of metal composition,reaction temperature,and hydrogen pressure on conversion and selectivity were investigated systematically. Among various compositions of catalysts,Ni Co/CNT exhibited best performance of guaiacol conversion with higher selectivity towards desired alcohols with higher H/Cefffactor. The reaction pathways of guaiacol in aqueous were proposed based on the product analyzed.Results show that metal composition and temperature have great effects on the conversion of guaiacol and the yields of desired products.
基金the financial support from EnerBio Program of Fondation Tuck France,and express their gratitude to Mr
文摘A model is proposed to describe soot formation and oxidation during bio-oil gasification.It is based on the description of bio-oil heating,devolatilization,reforming of gases and conversion of both char and soot solids.Detailed chemistry (159 species and 773 reactions) is used in the gas phase.Soot production is described by a single reaction based on C2H2species concentration and three heterogeneous soot oxidation reactions.To support the validation of the model,three sets of experiments were carried out in a lab-scale Entrained Flow Reactor (EFR) equipped with soot quantification device.The temperature was varied from 1000 to 1400 C and three gaseous atmospheres were considered:default of steam,large excess of steam(H2O/C=8),and the presence of oxygen in the O/C range of 0.075–0.5.The model is shown to accurately describe the evolution of the concentration of the main gas species and to satisfactorily describe the soot concentration under the three atmospheres using a single set of identified kinetic parameters.Thanks to this model the contribution of different mechanisms involved in soot formation and oxidation in various situations can be assessed.
基金supported by the National Basic Research Program of China(973 Program,No.2013CB228103)
文摘Fractional pyrolysis and one-step pyrolysis of natural algae Cyanobacteria from Taihu Lake were comparatively studied from 200 to 500 ℃. One-step pyrolysis produced bio-oil with complex composition and low high heating value (HHV〈30.9 MJ/kg). Fractional pyrolysis separated the degradation of different components in Cyanobacteria and improved the selectivity to products in bio-oil. That is, acids at 200 ℃, amides and acids at 300 ℃, phenols and nitriles at 400 ℃, and phenols at 500 ℃, were got as main products, respectively. HZSM-5 could promote the dehydration, cracking and aromatization of pyrolytic intermediates in fractional pyrolysis. At optimal HZSM-5 catalyst dosage of 1.0 g, the selectivity to products and the quality of bio-oil were improved obviously. The main products in bio-oil changed to nitriles (47.2%) at 300 ℃, indoles (51.3%) and phenols (36.3%) at 400 ℃. The oxygen content was reduced to 7.2 wt% and 9.4 wt%, and the HHV was raised to 38.1 and 37.3 MJ/kg at 300 and 400 ℃, respectively. Fractional catalytic pyrolysis was proposed to be an efficient method not only to provide a potential solution for alleviating environmental pressure from water blooms, but also to improve the selectivity to products and obtain high quality bio-oil.
基金the Ministry of Research,Technology and Higher Education,Indonesia,for the financial support of this work through the research grant of "Produk Terapan" Universitas Negeri Semarang,Nomor:084/SP2H/LT/DRPM/IV/2017
文摘Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biomass into a more valuable product which is bio-oil. Bio-oil is a condensed liquid from the vapor phase of biomass pyrolysis such as coconut shells and coffee shells. Biomass composition consisting of hemicellulose, cellulose, and lignin will oxidize to phenol which is the main content in bio-oil. The total phenolic compounds contained in bio-oil are 47.03%(coconut shell) and 45%(coffee shell). The content of phenol compounds in corrosive bio-oils still quite high, the use of this bio-oil directly will cause various difficulties in the combustion system due to high viscosity, low calorific value, corrosivity, and instability. Phenol compounds have some benefits as one of the compounds for floor cleaners and disinfectants which are contained in bio-oil.The correlation between experimental data and calculations shows that the UNIQUAC Functional-group Activity Coefficients(UNIFAC) equilibrium model can be used to predict the liquid–liquid equilibrium in the phenol extraction process of the coconut shell pyrolysis bio-oil. While the Non-Random Two Liquid(NRTL) equilibrium model can be used to predict liquid–liquid equilibrium in the extraction process of phenol from bio-oil pyrolysis of coffee shells.
基金Supported by the National Science and Technology Supporting Plan Through Contract(2015BAD15B06)the National Natural Science Foundation of China(51276166)+1 种基金the National Basic Research Program of China(2013CB228101)Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization(2013A061401005)
文摘Pyrolytic lignin, the water-insoluble fraction in bio-oil, often shows a high content and has strong intermolecular interactions with other compounds in bio-oil. In order to obtain pure pyrolytic lignin and facilitate the utilization of aqueous phase obtained from water extraction of bio-oil, methanol–water extraction method was employed to further separate the bio-oil water-insoluble phase in this paper. Different technologies, including Fourier transform infrared spectroscopy, gel permeation chromatography, and nuclear magnetic resonance, were adopted to characterize the structures of pyrolytic lignins with different activities obtained through this method. Both the heating value and the polymerization degree of high-molecular-weight pyrolytic lignin were higher than those of low-molecular-weight pyrolytic lignin. The molecular weight distribution of high-molecular-weight pyrolytic lignin was relatively wider, among which the contents of dimers to pentamers all accounted for 12% –18%,while the low-molecular-weight pyrolytic lignin mainly consisted of trimers(75.38%). The pyrolytic lignins had similar basic structures, both of which contained syringyl and guaiacyl units, whereas the low-molecular-weight pyrolytic lignin had more abundant syringyl units, reactive carbonyl groups and hydroxyl groups. Meanwhile,thermogravimetric study revealed that the final char residue yield of low-molecular-weight pyrolytic lignin was lower than that of high-molecular-weight pyrolytic lignin.
基金financial support from the National Natural Science Foundation of China (No. 21766019)the Key Research and Development Program of Jiangxi Province (20171BBF60023)+2 种基金the International Science & Technology Cooperation Project of China (2015DFA60170-4)the Science and Technology Research Project of Jiangxi Province Education Department (No. GJJ150213)the Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development Program (No. Y707sb1001)
文摘This study investigated the effects of torrefaction with Mg(OH)2 on the properties of bio-oil formed from the microwave-assisted catalytic fast co-pyrolysis of straw stalk and soapstock.The effects of torrefaction temperature and residence time on the yield and composition of bio-oil were discussed.Results showed that the torrefaction temperature and residence time remarkably influenced the yield and composition of bio-oil.With the increase in temperature and time,the bio-oil yield and the proportion of oxygen-containing compounds decreased,while the proportion of aromatic compounds increased.When the feedstocks were subject to torrefaction reaction for 20 min at 260°C,the proportion of oxygen-containing compounds decreased from 29.89%to 16.49%.Meanwhile,Mg(OH)2 could render the deoxidization function of torrefaction process increasingly noticeable.The proportion of the oxygen-containing compounds reached a minimum(14.41%),when the biomass-to-Mg(OH)2 ratio was 1:1.
文摘Supercritical CO2 extraction was employed to separate simulated and real bio-oils. Effects of extraction pressure, temperature and adsorbents on distribution coefficient (or enrichment coefficient) of five representative compounds were investigated using a simulated bio-oil, which was composed of acetic acid (AC), propanoic acid (PA), furfural (FR), acetylacetone (AA) and 2-methoxyphenol (MP). The distribution coefficients of AA, FR and MP between super-critical CO2 phase and liquid phase were bigger than 1.5, while those of AC and PA characteristic of relatively strong polarity were less than 1. Temperature and pressure also had impacts on the distribution coefficients of AA, FR and MP, especially remarkable for AA. The extraction of simulated bio-oil spiked on three adsorbents shows that adsorbents influence extraction efficiency and selectivity by changing intermolecular forces. High extraction pressure and relative low temperature are beneficial to reduce the water content in the extract. In addition, the feasibility of supercritical CO2 extraction of real bio-oil was examined. After extraction in the extraction fraction total ketones increased from 14.1% to 21.15~25.40%, phenols from 10.74% to 31.32~41.25%, and aldehydes from 1.92% to 3.95~8.46%, while the acids significantly dropped from 28.15% to 6.92~12.32%, and water from 35.90% to 6.64~4.90%. In view of extraction efficiency, the optimal extraction temperature was determined to be 55℃. Extraction efficiency of the real bio-oil increased with rising pressure. The maximal extraction efficiency of real bio-oil on water-free basis could reach to 88.6%. After scCO2 extraction, the calorific value and stability of the extract fraction evidently increased and the acidity slight decreased with nearly 100% volatility below 140℃, suggesting potentially applicable as substitute for engine fuel.
文摘Sewage sludge is an unavoidable secondary pollution produced in the process of sewage treatment. At present traditional methods of treating sludge (e.g. landfill, incineration or land application) have some disadvantages and shortages. Direct thermochemical liquefaction of sludge is a new treatment method, which has the advantage of both treatment and energy recovery. Research progress and application prospect of sludge liquefaction technology are widely reported, typical liquefaction process with bio-oil production and its main influencing factors are introduced. Besides, the devel- opment of this process is illustrated, and resource and energy recovery of this technology are pointed out to be the ten- dency of sludge treatment in the future.
基金the EPSRC (Grant no. EP/P018955/1) for supportthe financial support provided by the post-doctoral research fellowship programme (2219),Scientific and Technological Research Council of Turkey (TUBITAK)
文摘In this work,we report for the first time the in-situ catalytic pyrolysis of Pavlova sp.microalgae,which has been performed in a fixed-bed reactor in presence of Ce/Al2O3-based catalysts.The effects of pyrolysis parameters,such as temperature and catalyst were studied on the products yield distribution and biooil composition,among others.Results showed that all catalysts increased the bio-oil yield with respect to the non-catalytic runs and reduced the O/C ratio from 0.69(Pavlova sp.)to 0.1–0.15,which is close to that of crude oil.In terms of bio-oil oxygen content,Mg Ce/Al2O3presented the best performance with a reduction of more than 30%,from 14.1 to 9.8 wt%,of the oxygen concentration in comparison with thermal pyrolysis.However,Ni Ce/Al2O3gave rise to the highest aliphatics/aromatics fractions.The elemental and gas analysis indicates that N was partially removed from the catalytic bio-oils in the gas phase in forms of NH3and HCN.
文摘Two series of bimetallic Ni-Co catalysts and corresponding monometallic catalysts with ca. 20 wt% metal loading were evaluated in hydrodeoxygenation (HDO) of phenol as a model compound for bio-oil. The bimetallic catalysts outperformed the corresponding monometallic catalyst in terms of conversion and cyclohexane selectivity. This could be attributed to the formation of Ni-Co alloy, which caused a decrease in metal particle size and stabilized Ni active sites in the near surface region. The balanced combination of formed Ni-Co alloy with acidity from supports allowed performing all individual steps in the reaction network toward desired products at high rate. Consequently, the two best-performing catalysts were tested in HDO of wood based bio-oil, showing that the bimetallic catalyst 10Ni10Co/HZSM-5 was more effective than 20Ni/HZSM-5 in terms of degree of deoxygenation and upgraded bio-oil yield. These findings might open an opportunity for development of a novel cheap but effective catalyst for a key step in the process chain from biomass to renewable liquid fuels.
文摘Hydrothermal liquefaction (HTL) processing of lignocellulosic biomass to bio-oil produces aqueous co-product (AP) which contains significant (~40 wt%) carbon from the original feedstock. This study evaluates macro and micronutrient composition of AP from Ca(NO3)2 catalyzed HTL of cardboard (CbAP) to cultivate bacteria. HPLC, GC-MS and ICP-MS analysis of CbAP revealed presence of C1-C3 carboxylic acids, aldehydes, ketones, phenolics, sub-optimal phosphorous and bio-incompatible levels of calcium. Dilutions (5 - 80 vol%) of detoxified CbAP (DTP-CbAP) in potassium phosphate buffer (pH 7.2) were supplemented with 50 mg·mL-1 of yeast extract and inoculated with metabolically versatile Enterobacter species. The cultures were incubated at 25°C under aerobic conditions. A maximum 9.4 fold increase in the dry cell weight was observed in DTP-CbAP-15 vol%. Co-liquefaction of the bacteria with cardboard in 1:1 and 1:3 weight ratios each produced ~33% more total bio-oil. These had higher HHVs of 34.11 and 31.05 MJ·kg-1, respectively compared with bio-oil from cardboard feedstock alone which had HHV of 30.61 MJ·kg-1. The study highlights the challenges in cultivating microbes in AP from HTL of lignocellulosic biomass (LCB) and the possibility to integrate microbial capture and recycle of the AP carbon for enhanced bio-oil production and quality.
文摘The pyrolysis of eucalyptus wood was carried out in a batch reactor to optimize the yield of bio-oil.Effect of various parameters like feed(particle) size,temperature,presence of catalyst and heating rate on the yield of bio-oil was investigated.The optimum conditions for high yield of bio-oil are for the particle size 2 mm^5 mm(average l/d=12.84/2.03 mm) at 450 ℃ in high heating rate.The reaction kinetics and the quality of bio-oil produced are independent of the presence of different catalysts like mordenite,kaoline clay,fly ash and silica alumina.The physical properties like odour,colour,PH,viscosity,heating value were determined.The FT-IR analysis of bio-oil indicates the presence of different functional groups such as monomeric alcohol,phenol,ketones,aldehydes,carboxylic acid,amines,and nitro compounds.The composition of the bio-oil at different conditions was analyzed using GC-MS and found that the components are temperature dependent but independent of catalysts used.
文摘Renewable hydrocarbons refer to fuels consisting of hydrocarbons of 10 to 20 carbon atoms, produced from biomass, and free of oxygen. Hydrocracking, hydrodeoxygenation and hydrotreatment processes for the production of renewable hydrocarbons are described in the literature. Microalgae have been targeted in recent years to synthesize biomass that can be used in the production of biofuels, such as renewable hydrocarbons, biodiesel or ethanol second generation. In this context the lineage Monoraphidium sp. was selected from previous ecophysiological studies and its potential to produce lipids to develop this research related with the extraction of the bio-oil of the wet biomass of Monoraphidium sp. through heat treatment. Consecutively the bio-oil was used as raw material for the production of hydrocarbons through hydrocracking and hydrodeoxygenation processes (HDO) as: decarbonylation, decarboxylation, dehydratation, with in situ production of hydrogen from liquid-phase reforming of glycerol. The reactions were carried out under two different temperature conditions, 350°C and 300°C, respectively, for 1 h and using ruthenium alumina catalyst (Ru/Al2O3). The results showed the bio-oil processing route at a temperature of 350°C promising for the production of hydrocarbons achieving a conversion of 81.54%.
文摘A novel system of fast pyrolysis and vapour quenching was developed at pilot scale to obtain bio-oil from biomass. The system uses three-stage of interconnected fluidized bed reactors that continuously circulate silica sand from an internal pyrolysis reactor to a second external annular reactor for char burning, which generates most of the heat required by the pyrolysis reactor, and a third sand-preheating reactor that burns non-condensable pyrolysis gas. The hot vapours, after high temperature cleaning, are quenched in a flash cooling system. The process generates up to 62% of bio-oil, 25% of char and 13% of non-condensable gas. The heat requirements for the total system are provided by burning part of the char and non-condensable gases generated in the pyrolysis step and by preheating the fluidizing gas for the pyrolysis reactor.