期刊文献+
共找到5,459篇文章
< 1 2 250 >
每页显示 20 50 100
Recycled, Bio-Based, and Blended Composite Materials for 3D Printing Filament: Pros and Cons—A Review
1
作者 Khanh Q. Nguyen Pascal Y. Vuillaume +4 位作者 Lei Hu Jorge López-Beceiro Patrice Cousin Saïd Elkoun Mathieu Robert 《Materials Sciences and Applications》 2023年第3期148-185,共38页
In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing... In recent years, additive manufacturing (AM), known as “3D printing”, has experienced exceptional growth thanks to the development of mechatronics and materials science. Fused filament deposition (FDM) manufacturing is the most widely used technique in the field of AM, due to low operating and material costs. However, the materials commonly used for this technology are virgin thermoplastics. It is worth noting a considerable amount of waste exists due to failed print and disposable prototypes. In this regard, using green and sustainable materials is essential to limit the impact on the environment. The recycled, bio-based, and blended recycled materials are therefore a potential approach for 3D printing. In contrast, the lack of understanding of the mechanism of interlayer adhesion and the degradation of materials for FDM printing has posed a major challenge for these green materials. This paper provides an overview of the FDM technique and material requirements for 3D printing filaments. The main objective is to highlight the advantages and disadvantages of using recycled, bio-based, and blended materials based on thermoplastics for 3D printing filaments. In this work, solutions to improve the mechanical properties of 3D printing parts before, during, and after the printing process are pointed out. This paper provides an overview on choosing which materials and solutions depend on the specific application purposes. Moreover, research gaps and opportunities are mentioned in the discussion and conclusions sections of this study. 展开更多
关键词 Additive Manufacturing 3D Printing Fused Filament Deposition (FDM) Manufacturing Recycled bio-based Blended Materials INTERLAYER
下载PDF
Understanding the corrosion and bio-corrosion behaviour of Magnesium composites – a critical review
2
作者 Prithivirajan Sekar S.K.Panigrahi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期890-939,共50页
Realising the potential of Magnesium(Mg),several globally leading ventures have invested in the Mg industry,but their relatively poor corrosion resistance is a never ending saga till date.The corrosion and bio-corrosi... Realising the potential of Magnesium(Mg),several globally leading ventures have invested in the Mg industry,but their relatively poor corrosion resistance is a never ending saga till date.The corrosion and bio-corrosion behaviour of Mg has gained research attention and still remains a hot topic in the application of automobile,aerospace and biomedical industries.The intrinsic high electrochemical nature of Mg limits their utilization in diverse application.This scenario has prompted the development of Mg composites with an aim to achieve superior corrosion and bio-corrosion resistance.The present review enlightens the influence of grain size(GS),secondary phase,texture,type of matrix and reinforcement on the corrosion and bio-corrosion behaviour of Mg composites.Firstly,the corrosion and bio-corrosion behaviour of Mg composites manufactured by primary and secondary processing routes are elucidated.Secondly,the comprehensive corrosion and bio-corrosion mechanisms of these Mg composites are proposed.Thirdly,the individual role of GS,texture and corrosive medium on corrosion and bio-corrosion behaviour of Mg composites are clarified and revealed.The challenges encountered,unanswered issues in this field are explained in detail and accordingly the scope for future research is framed.The review is presented from basic concrete background to advanced corrosion mechanisms with an aim of creating interest among the readers like students,researchers and industry experts from various research backgrounds.Indeed,the corrosion and bio-corrosion behaviour of Mg composites are critically reviewed for the first time to:(i)contribute to the body of knowledge,(ii)foster research and development,(iii)make breakthrough,and(iv)create life changing innovations in the field of Mg composite corrosion. 展开更多
关键词 CORROSION bio corrosion Magnesium alloys Magnesium composites Magnesium implants.
下载PDF
Preparation and Properties of Vegetable-Oil-Based Thioether Polyol and Ethyl Cellulose Supramolecular Composite Films
3
作者 Ruyu Yan Jian Fang +7 位作者 Xiaohua Yang Na Yao Mei Li Yuan Nie Tianxiang Deng Haiyang Ding Lina Xu Shouhai Li 《Journal of Renewable Materials》 SCIE EI 2023年第4期1937-1950,共14页
Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes i... Ethyl cellulose(EC),an important biomass-based material,has excellent film-forming properties.Nevertheless,the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC,which makes it too brittle to be used widely.The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer.In this study,an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC.Dimer-fatty-acid-based thioether polyol(DATP)was synthesized and used to modify ethyl cellulose films.The supramolecular composite films of DATP and ethyl cellulose were designed using the newly-formed van der Waals force.The thermal stability,morphology,hydrophilicity,and mechanical properties of the composite films were all tested.Pure EC is fragile,and the addition of DATP makes the ethyl cellulose films more flexible.The elongation at the break of EC supramolecular films increased and the tensile strength decreased with the increasing DATP content.The elongation at the break of EC/DATP(60/40)and EC/DATP(50/50)was up to 40.3%and 43.4%,respectively.Noticeably,the thermal initial degradation temperature of the film with 10%DATP is higher than that of pure EC,which may be attributed to the formation of a better supramolecular system in this composite film.The application of bio-based material(EC)is environmentally friendly,and the novel DATP can be used as a special and effective plasticizer to prepare flexible EC films,making it more widely used in energy,chemical industry,materials,agriculture,medicine,and other fields. 展开更多
关键词 Ethyl cellulose dimeric fatty acid based thioether polyol supramolecular system composite films
下载PDF
Microstructural image based convolutional neural networks for efficient prediction of full-field stress maps in short fiber polymer composites
4
作者 S.Gupta T.Mukhopadhyay V.Kushvaha 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期58-82,共25页
The increased demand for superior materials has highlighted the need of investigating the mechanical properties of composites to achieve enhanced constitutive relationships.Fiber-reinforced polymer composites have eme... The increased demand for superior materials has highlighted the need of investigating the mechanical properties of composites to achieve enhanced constitutive relationships.Fiber-reinforced polymer composites have emerged as an integral part of materials development with tailored mechanical properties.However,the complexity and heterogeneity of such composites make it considerably more challenging to have precise quantification of properties and attain an optimal design of structures through experimental and computational approaches.In order to avoid the complex,cumbersome,and labor-intensive experimental and numerical modeling approaches,a machine learning(ML)model is proposed here such that it takes the microstructural image as input with a different range of Young’s modulus of carbon fibers and neat epoxy,and obtains output as visualization of the stress component S11(principal stress in the x-direction).For obtaining the training data of the ML model,a short carbon fiberfilled specimen under quasi-static tension is modeled based on 2D Representative Area Element(RAE)using finite element analysis.The composite is inclusive of short carbon fibers with an aspect ratio of 7.5that are infilled in the epoxy systems at various random orientations and positions generated using the Simple Sequential Inhibition(SSI)process.The study reveals that the pix2pix deep learning Convolutional Neural Network(CNN)model is robust enough to predict the stress fields in the composite for a given arrangement of short fibers filled in epoxy over the specified range of Young’s modulus with high accuracy.The CNN model achieves a correlation score of about 0.999 and L2 norm of less than 0.005 for a majority of the samples in the design spectrum,indicating excellent prediction capability.In this paper,we have focused on the stage-wise chronological development of the CNN model with optimized performance for predicting the full-field stress maps of the fiber-reinforced composite specimens.The development of such a robust and efficient algorithm would significantly reduce the amount of time and cost required to study and design new composite materials through the elimination of numerical inputs by direct microstructural images. 展开更多
关键词 Micromechanics of fiber-reinforced composites Machine learning assisted stress prediction Microstructural image-based machine learning CNN based stress analysis
下载PDF
An Investigation of Coral Based Bioactive Composite Bone in a Critical-sized Cranial Defects
5
作者 Rui HOU Tian-Qiu MAO~△ Fu-Lin CHEN Zhan GAO Shu-Jun CHENYao-Wu YANG Xiao-Bing CHENG(Department of Oral and Maxillofacial Surgery, Stomatological College, Fourth Military Medical University, Xi’an 710032, China) 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2005年第S1期1-3,共3页
关键词 BMSCs BONE An Investigation of Coral based bioactive composite Bone in a Critical-sized Cranial Defects
下载PDF
Mechanical Properties of Bio-Based Epoxy Composites Reinforced with Hybrid-Interlayer Ramie and Recycled Carbon Fibres 被引量:1
6
作者 Chenkai Zhu Saihua Li +1 位作者 Xiaoye Cong Xiaoling Liu 《Open Journal of Composite Materials》 2020年第4期118-133,共16页
The growing environmental concerns have led to attention on bio-based composite materials, such as the natural fibres, recycled carbon fibres and bio-based resins. Herein, the bio-based epoxy composites were reinforce... The growing environmental concerns have led to attention on bio-based composite materials, such as the natural fibres, recycled carbon fibres and bio-based resins. Herein, the bio-based epoxy composites were reinforced with ramie fibre (RF) and recycled carbon fibre (rCF) via inter-layer hybridisation. The dynamic mechanical analysis, tensile, flexural and impact properties characterisation were conducted to analyse the mechanical behaviour of the specimens. Also, the morphology of fractured surface after mechanical tests was studied under a scanning electron microscope. When the volume ratio between RF and rCF was varied from 100/0 to 0/100, the flexural and tensile strength of composites was significantly increased, while the impact strength was reduced. Thus the maximum values of flexural strength (182 MPa) and tensile strength (165 MPa) were observed for rCF reinforced composite, whilst impact strength of 24 kJ/m</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;"> was found for RF reinforced composite. Furthermore, the values of storage and loss modulus were increased with the rCF incorporation due to a greater degree of restriction with the addition of rCF into the matrix. The hybridisation was able to combine the specific properties of RF and rCF and optimise the mechanical performance of composites. Therefore, the alternative low-cost green composites are prepared which can replace synthetic materials for semi-structural applications. 展开更多
关键词 Recycled Carbon Fibres Ramie Fibres bio-based Epoxy Hybrid Interlayer Mechanical Properties
下载PDF
Design,preparation,microstructure and mechanical property of the lightweight radiation-shielding Mg-Ta-Al composites basing differential temperature hot rolling
7
作者 Wenbo Luo Songya Feng +7 位作者 Xiuzhu Han Li Zhou Qinke Kong Zhiyong Xue Jianzhao Wang Mei Zhan Xianhua Chen Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2433-2446,共14页
A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiati... A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process. 展开更多
关键词 Dissimilar metals composites Mg based alloys Radiation shielding Hot rolling LIGHTWEIGHT
下载PDF
Features of microstructure and fracture in the transient liquid phase bonded aluminium-based metal matrix composite joints 被引量:3
8
作者 孙大谦 刘卫红 +2 位作者 吴建红 贾树盛 邱小明 《China Welding》 EI CAS 2002年第1期9-13,共5页
Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the ... Transient liquid phase (TLP) bonded aluminium based metal matrix composite (MMC) joints can be classified into three distinct regions, i.e. the particulate segregation region, the denuded particulate region and the base material region. The microstructure of the particulate segregation region consists of alumina particulate and Al alloy matrix with the Al 2Cu and MgAl 2O 4. It contains more and smaller alumina particulates compared with the base material region. The TLP bonded joints have the tensile strength of 150 MPa ~200 MPa and the shear strength of 70 MPa ~100 MPa . With increasing tensile stress, cracks initiate in the particulate segregation region, especially in the particulate/particulate interface and the particulate/matrix interface, and propagate along particulate/matrix interface, througth thin matrix metal and by linking up the close cracks. The particulate segregation region is the weakest during tensile testing and shear testing due to obviously increased proportion of weak bonds (particulate particulate bond and particulate matrix bond). 展开更多
关键词 aluminium based metal matrix composite transient liquid phase bonding MICROSTRUCTURE FRACTURE
下载PDF
Adhesive Bonding and Self-Curing Characteristics of α-Starch Based Composite Binder for Green Sand Mould/Core 被引量:1
9
作者 XiaZHOU JinzongYANG GuohuiQU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第5期617-621,共5页
Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and the... Interactions between different components in α-starch based composite binder for green sand mould/core were investigated by using XRD, IR spectra, 1H NMR spectra and SEM. Several adhesive hardening structures and theories of the binder at room temperature were proposed according to the interactions between various compositions. Thus, the reasons for the binder to have excellent combination properties and unique adhesive bonding and self-curing characteristics were explained by these theories successfully. And the theories are of great directive importance to design and development of composite binder for green sand mould/core. 展开更多
关键词 α-Starch based composite binder Interaction Adhesive bonding Self-curing characteristic Green state
下载PDF
Simulation of the plasticizing behavior of composite modified doublebase(CMDB)propellant in grooved calendar based on adaptive grid technology 被引量:2
10
作者 Su-wei Wang Xiu-duo Song +6 位作者 Zong-kai Wu Lei Xiao Guang-pu Zhang Yu-bing Hu Ga-zi Hao Wei Jiang Feng-qi Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第6期1954-1966,共13页
The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with ... The frequent occurrence of safety accidents during the calendering process is caused by the flammable and explosive properties of composite modified double-base(CMDB)propellant.Optimization of process parameters with the aid of fluid simulation technology could effectively ensure the safety of the calendering process.To improve the accuracy of the simulation results,material parameters and model structure were corrected based on actual conditions,and adaptive grid technology was applied in the local mesh refinement.In addition,the rheological behavior,motion trajectories and heat transfer mechanisms of CMDB propellant slurry were studied with different gaps,rotational rates and temperatures of two rollers.The results indicated that the refined mesh could significantly improve the contour clarity of boundaries and simulate the characteristics of CMDB propellant slurry reflux movement caused by the convergent flow near the outlet.Compared with the gap,the increased rotational rate of roller could promote the reflux movement and intensify the shear flow of slurry inside the flow region by viscous shear dragging.Meanwhile,under the synergistic effect of contact heat transfer as well as convective heat exchange,heat accumulated near the outlet and diffused along the reflux movement,which led to the countercurrent heat dissipation behavior of CMDB propellant slurry.The plasticizing mechanism of slurry and the safety of calendering under different conditions were explored,which provided theoretical guidance and reference data for the optimization of calendering process conditions.Based on the simulation results,the safety of the CMDB propellant calendering process could be significantly improved with a few tests conducted during a short research and development cycle. 展开更多
关键词 composite modified double base propellant Calendering process Fluid simulation Vortex flow0
下载PDF
Improvement of Water Sensitivity of Macro-defect-free Cement Based Composites with Cross Coupling Agent 被引量:1
11
作者 李北星 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第2期25-30,共6页
The enhancement of interface bonding between cement and polymerand the structural reticula- tion of the water-soluble polymer areproposed to minimize the shortening of the mechanical properties ofmacro-de- fect-free(M... The enhancement of interface bonding between cement and polymerand the structural reticula- tion of the water-soluble polymer areproposed to minimize the shortening of the mechanical properties ofmacro-de- fect-free(MDF)cement based composites at high relativehumidity. The MDF composites incorporated with vari- ouscross-coupling agents studied experimentally. The results show thatthe MDF composites modified with small amounts of cross-couplingagent had raised mechanical properties, but it is more important thatthe modified MDF composites had a significant increase in waterresistance compared to the original one. 展开更多
关键词 macro-defect-free(MDF)cement based composites cross-coupling agent α-alumina
下载PDF
Polarization-Insensitive Magnetic Quadrupole-Shaped and Electric Quadrupole-Shaped Fano Resonances Based on a Plasmonic Composite Structure 被引量:1
12
作者 董晨 李宝 +5 位作者 李韩笑 刘慧 陈孟琪 李冬冬 闫长春 张道华 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第7期68-71,共4页
A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudina... A combined structure with the unit cell consisting of four sub-units with 90° rotation in turn is designed. Each of sub-units is composed of two gold rods in transverse arrangement and one gold rod in longitudinal arrangement. Simulating electromagnetic responses of the structure, we verify that the structure exhibits the double Fano resonances, which originate from the coupling between magnetic quadrupoles and electric dipoles and the coupling between electric quadrupoles and electric dipoles. Simulation results also demonstrate that the structure is polarization-insensitive and shows an analogue of electromagnetically induced transparency at the two Fano resonances. Such a plasmonic structure has potential applications in photoelectric elements. 展开更多
关键词 of is it in Polarization-Insensitive Magnetic Quadrupole-Shaped and Electric Quadrupole-Shaped Fano Resonances based on a Plasmonic composite Structure MODE that on
下载PDF
Spray Atomized and Codeposited Al-Li Based Metal-matrix Composites Processing and Properties 被引量:1
13
作者 E. Raskin S. Nayim M.Polak and J.Baram(Materials Engineering Dept., Ben-Gurion University of the Negev, Beer-Sheva, Israel )A.N.Sembira(Nuclear Research Center, Negev, Beer-Sheva, Israel)(To whom correspondence should be addressed) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1995年第5期329-339,共11页
In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate wh... In spray atomization and codeposition, a molten stream of metal is disintegrated into a fine dispersion of droplets by high velocity gas jets. The resulting semi-solidified droplets are directed towards a substrate where they impact and collect as rapidly solidified splats. Relatively high rates of solidification are achieved as a result of the thinness of the splats and the rapid heat extraction during flight and upon impacting with the substrate. The processing method uses codeposition of the metallic semi-solidified droplets (metallic matrix) with the injected reinforcement ceramic particles. In the present paper, the microstructures, mechanical properties, interfacial properties, thermal stability and aging behaviour of spray atomized and codeposited Al-Li-X MMC's (injected X=SiC, Al2O3) are reported and correlated to the processing conditions. 展开更多
关键词 LI Al Spray Atomized and Codeposited Al-Li based Metal-matrix composites Processing and Properties
下载PDF
Smart Behavior of Carbon Fiber Reinforced Cement-based Composite 被引量:13
14
作者 Wu YAO, Bing CHEN Keru WUState Key Laboratory of Concrete Materials Research, Tongji University, Shanghai 200092, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第3期239-242,共4页
The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers. Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can se... The electrical characteristics of cement-based material can be remarkably improved by the addition of short carbon fibers. Carbon fiber reinforced cement composite (CFRC) is an intrinsically smart material that can sense not only the stress and strain, but also the temperature. In this paper, variations of electrical resistivity with external applied load, and relation of thermoelectric force and temperature were investigated. Test results indicated that the electrical signal is related to the increase in the material volume resistivity during crack generation or propagation and the decrease in the resistivity during crack closure. Moreover, it was found that the fiber addition increased the linearity and reversibility of the Seebeck effect in the cement-based materials. The change of electrical characteristics reflects large amount of information of inner damage and temperature differential of composite, which can be used for stress-strain or thermal self-monitoring by embedding it in the concrete structures. 展开更多
关键词 Carbon fiber Cement-based composite Smart material Seebeck effect
下载PDF
Piezoresistivity in Carbon Fiber Reinforced Cement Based Composites 被引量:5
15
作者 BingCHEN KeruWU WuYAO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期746-750,共5页
The results of some interesting investigation on the piezoresistivity of carbon fiber reinforced cement based composites (CFRC) are presented with the prospect of developing a new nondestructive testing method to asse... The results of some interesting investigation on the piezoresistivity of carbon fiber reinforced cement based composites (CFRC) are presented with the prospect of developing a new nondestructive testing method to assess the integrity of the composite. The addition of short carbon fibers to cement-based mortar or concrete improves the structural performance and at the same time significantly decreases the bulk electrical resistivity. This makes CFRC responsive to the smart behavior by measuring the resistance change with uniaxial pressure. The piezoresistivity of CFRC under different stress was studied, at the same time the damage occurring inner specimens was detected by acoustic emission as well. Test results show that there exists a marking pressure dependence of the conductivity in CFRC, in which the so-called negative pressure coefficient of resistive (NPCR) and positive pressure coefficient of resistive (PPCR) are observed under low and high pressure. Under constant pressures, time-dependent resistivity is an outstanding characteristic for the composites, which is defined as resistance creep. The breakdown and rebuild-up process of conductive network under pressure may be responsible for the pressure dependence of resistivity. 展开更多
关键词 Carbon fiber Cement-based composites PIEZORESISTIVITY
下载PDF
New Iron-based SiC Spherical Composite Magnetic Abrasive for Magnetic Abrasive Finishing 被引量:12
16
作者 ZHANG Guixiang ZHAO Yugang +2 位作者 ZHAO Dongbiao ZUO Dunwen YIN Fengshi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期377-383,共7页
SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this ... SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness(Ra) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive, and provide a more practical approach for large-scale industrial production of magnetic abrasive. 展开更多
关键词 iron-based SiC composite powder gas atomization and rapid solidification spherical composite magnetic abrasive magnetic abrasive finishing(MAF)
下载PDF
Starch-Based Adhesives for Wood/Wood Composite Bonding: Review 被引量:6
17
作者 Ravindra V. Gadhave Prakash A. Mahanwar Pradeep T. Gadekar 《Open Journal of Polymer Chemistry》 2017年第2期19-32,共14页
Increasing global energy crisis and scarcity of petroleum resources has shifted focus of chemical industries to look for alternative raw material resources. The main focus of raw materials in wood adhesives, such as p... Increasing global energy crisis and scarcity of petroleum resources has shifted focus of chemical industries to look for alternative raw material resources. The main focus of raw materials in wood adhesives, such as petroleum and natural gas [1] [2], would be gradually replaced by renewable biopolymers. Starch is a relatively inexpensive and renewable product from abundant plants, easy processing and it has been extensively used as binders, sizing materials, glues and pastes [3], but its bonding capacity is not strong enough to glue wood [4]. Extensive research has been carried out on improving the cohesive properties, especially water resistance, of starch-based adhesives. In starch-based wood adhesive many new approaches have come forward for effective use it in wood/wood composite adhesive giving comparable performance as synthetic adhesives. This review of starch-based adhesives is made with the focus on starch modification methods for improving properties of starch-based adhesives. 展开更多
关键词 bio-Polymer STARCH WOOD Adhesives Cross-Linking composite
下载PDF
High-Performance and Multifunctional Cement-Based Composite Material 被引量:11
18
作者 Victor C. Li 《Engineering》 SCIE EI 2019年第2期250-260,共11页
Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those... Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those that support the desirable durability, resilience, and sustainability of civil infrastructure that directly impact our quality of life. It is proposed that high-performance material characteristics include tensile ductility, autogenous crack-width control, and material “greenness.” Furthermore, smart functionalities should be aimed at enhancing infrastructure durability, resilience, and sustainability by responding to changes in the surrounding environment of the structure in order to perform desirable functions, thus causing the material to behave in a manner more akin to certain biological materials. Based on recent advances in engineered cementitious composites (ECCs), this paper suggests that concrete embodying such high-performance characteristics and smart multifunctionalities can be designed, and holds the potential to fulfill the expected civil infrastructure needs of the 21st century. Highlights of relevant properties of ECCs are provided, and directions for necessary future research are indicated. 展开更多
关键词 HIGH-PERFORMANCE concrete MULTIFUNCTION Smart CEMENT-based composite Durability RESILIENCE Sustainability Infrastructure
下载PDF
Microstructure and mechanical properties of a hot-extruded Al-based composite reinforced with core–shell-structured Ti/Al3Ti 被引量:3
19
作者 Li Zhang Bao-lin Wu Yu-lin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第12期1431-1437,共7页
An Al-based composite reinforced with core–shell-structured Ti/Al_3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate ... An Al-based composite reinforced with core–shell-structured Ti/Al_3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate tensile strength and elongation of the composite sintered at 620°C for 5 h and extruded at a mass ratio of 12.75:1 reached 304 MPa and 14%, respectively, and its compressive deformation reached 60%. The promising mechanical properties are due to the core–shell-structured reinforcement, which is mainly composed of Al_3Ti and Ti and is bonded strongly with the Al matrix, and to the reduced crack sensitivity of Al_3Ti. The refined grains after hot extrusion also contribute to the mechanical properties of this composite. The mechanical properties might be further improved through regulating the relative thickness of Al–Ti intermetallics and Ti metal layers by adjusting the sintering time and the subsequent extrusion process. 展开更多
关键词 microstructure aluminum-based composites Ti/Al3Ti REINFORCEMENTS mechanical properties
下载PDF
Microstructure of Cu-based Amorphous Composite Coatings on AZ91D Magnesium Alloy by Laser Cladding 被引量:8
20
作者 Kaijin Huang Changsheng Xie T.M. Yue 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第4期492-498,共7页
To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by las... To improve the sliding wear resistance of AZ91D magnesium alloy, Cu-based amorphous composite coatings made of CuaTTi34Zr11Nis and Cu47Ti34Zr11Ni8+20 wt pct SiC powders were fabricated on AZ91D magnesium alloy by laser cladding, respectively. SEM (scanning electron microscopy), EDS (energy dispersive X-ray spectroscopy), XRD (X-ray diffraction) and TEM (transmission electron microscopy) techniques were employed to study the phases of the coatings. The results show that the coatings mainly consist of amorphous phase and different intermetallic compounds. The reason of formation of amorphous phase and the function of SiC particles were explained in details. 展开更多
关键词 Laser cladding Cu-based amorphous composite coating SiC particle AZ91D magnesium alloy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部