Bioaerosols were collected by using a six-stage bioaerosols sampler from September 2007 to August 2008 in the coastal region of Qingdao, China. The terrestrial and marine microbes(including bacteria and fungi) were an...Bioaerosols were collected by using a six-stage bioaerosols sampler from September 2007 to August 2008 in the coastal region of Qingdao, China. The terrestrial and marine microbes(including bacteria and fungi) were analyzed in order to understand the distribution features of bioaerosols. The results show that the average monthly concentrations of terrestrial bacteria, marine bacteria, terrestrial fungi and marine fungi are in the ranges of 80–615 CFU m-3, 91–468 CFU m-3, 76–647 CFU m-3 and 231–1959 CFU m-3, respectively. The concentrations of terrestrial bacteria, marine bacteria, terrestrial fungi, marine fungi and total microbes are the highest in each microbial category during fall, high in spring, and the lowest in the summer and winter. The bacterial particles are coarse in spring, autumn and winter. The sizes of fungal particle present the log-normal distribution in all the seasons.展开更多
Bioaerosol emissions from animal feeding operation (AFO) facilities are of increasing interest due to the magnitude of the emissions and their potential health effect on local communities. There is limited information...Bioaerosol emissions from animal feeding operation (AFO) facilities are of increasing interest due to the magnitude of the emissions and their potential health effect on local communities. There is limited information about fate and transport of AFO bioaerosol emissions. In this study, concentrations of airborne bacteria and fungi were measured at four ambient stations in four wind directions surrounding an egg production farm through winter, spring and summer using Andersen six-stage samplers. Mean concentrations of ambient bacteria and fungi ranged from 8.7 × 102 CFU m-3 to 1.3 × 103 CFU m-3 and from 2.8 × 102 CFU m-3 to 1.4 × 103 CFU m-3, respectively. Ambient bacterial concentrations were not significantly different over the seasons, while ambient fungal concentrations were the highest in summer and the lowest in winter. There were significant differences between downwind and upwind bacterial concentrations (p < 0.0001). Downwind bacterial and fungal concentrations responded differently to the influencing factors. Bacterial concentrations were quadratically correlated with wind vector (combined effects of wind speed and direction) and emission rate, were positively correlated with temperature, and were negatively correlated with solar radiation. Fungal concentrations were positively correlated with temperature, RH, and emission rate, and were negatively correlated with wind vector.展开更多
Objective To develop a new sampling medium for detecting of bioaerosols. Methods The sampling media were tested by using Escherichia coli, Staphylococcus aureus and Serratia marcescens under static and active conditio...Objective To develop a new sampling medium for detecting of bioaerosols. Methods The sampling media were tested by using Escherichia coli, Staphylococcus aureus and Serratia marcescens under static and active conditions, preliminary applications were performed using AGI-10 and high volume sampler. Results The average recovery rates were raised to 24.7%, 58.2%, 40.5%, 44.1%, 20.5%, and 15.4%, respectively in six consecutive experiments under static condition for 60 min at room temperature. Four kinds of sampling media were singled out after static experiments, which were referred to as “samplutions” PD1, PX2, TD1, and TX2, respectively. Under the active condition, the protective efficacy of PD1, PX2, TD1, and TX2 was 226% (153/47), 553% (111/17), 150% (120/48), and 268% (419/114), respectively. Conclusion The samplutions have some effects on the subsequent nucleic acid detection, which could be avoided by employing standard nucleic acid extraction procedure. The newly developed samplution can be applied to the detection of bioaerosols.展开更多
This study was conducted to evaluate the impact of hazy and foggy weather on the bacterial communities in bioaerosols, for which samples were collected from the Qingdao coastal region on sunny, foggy, and hazy days in...This study was conducted to evaluate the impact of hazy and foggy weather on the bacterial communities in bioaerosols, for which samples were collected from the Qingdao coastal region on sunny, foggy, and hazy days in January and March 2013. Bacterial community compositions were determined using polymerase chain reaction denaturing gradient gel electrophoresis(PCR-DGGE). The bacterial community diversity was found to be high on foggy and hazy days, and the dominant species differed during hazy weather. The Shannon-Wiener index revealed that the bacterial community diversity of coarse particles was higher than that of fine particles in the bioaerosols. The bacterial community diversity of fine particles significantly correlated with relative humidity(RH; r^2 = 0.986). The cluster analysis results indicated that the bacterial communities on sunny days differed from those on hazy and foggy days. Compared with sunny days, the bacterial communities in the fine particles during hazy weather exhibited greater changes than those in the coarse particles. Most of the sequenced bacteria were found to be closely affiliated with uncultured bacteria. During hazy weather, members of the classes Bacilli and Gammaproteobacteria(Pseudomonas and Acinetobacter) were dominant. The DGGE analysis revealed that Proteobacteria and Firmicutes were the predominant phyla, and their relative percentages to all the measured species changed significantly on hazy days, particularly in the fine particles. Haze and fog had a significant impact on the bacterial communities in bioaerosols, and the bacterial community diversity varied on different hazy days.展开更多
The ongoing SARS-CoV-2 outbreak has rapidly increased the desire to manage bioaerosol exposures in indoor settings. Studies using chlorine dioxide gas (ClO<sub>2</sub>) at low concentrations have shown thi...The ongoing SARS-CoV-2 outbreak has rapidly increased the desire to manage bioaerosol exposures in indoor settings. Studies using chlorine dioxide gas (ClO<sub>2</sub>) at low concentrations have shown this intervention to be an effective mitigation strategy against viral, bacterial, and fungal elements in ambient air. There is an array of available products for generating ClO<sub>2</sub> gas however most involve the use of expensive or sophisticated technology that makes their applicability limited to specialized consumers. The purpose of this study was to determine the virucidal efficacy of three pragmatic and affordable, ClO<sub>2</sub> generating products using an aerosolized MS2 surrogate in a sealed chamber room under five different scenarios. The products tested included: Ultrashock—a ClO<sub>2</sub> releasing pod (30 ppmv), Filter Media—a ClO<sub>2</sub> impregnated zeolite media made to fit into an air blower housing (<0.01 ppmv) and Flow Stick—a smaller ClO<sub>2</sub> impregnated media filled air reactor tube (<0.01 ppmv). Testing scenarios included product deployment post MS2 bioaerosol introduction (Ultrashock and Filter Media), during MS2 bioaerosol introduction (Filter Media and Flow Stick) and prior to MS2 bioaerosol introduction (Filter Media). MS2 surface samples were collected using sterile petri-dishes and MS2 and ClO<sub>2</sub> air samples were collected from sampling ports on the outer chamber wall at 0, 90 and 180 minutes. The Ultrashock and Filter Media with air flow in the rapid sweep scenario showed the greatest reduction in air MS2 (T<sub>180</sub> = 99.992% and T<sub>180</sub> = 99.996% respectively) compared to the control (T<sub>180 </sub>= 99.6%). When compared to the control results, the filter media with air flow engaged prior to the introduction of MS2 yielded reductions of 99.87% and 99.93% in air and on surfaces respectively at T<sub>0</sub>, demonstrating the protective effect residual ClO2 has against air and surface contamination. These product formats have potential uses as remedial and preventative interventions against viral constituents in air and should undergo further evaluation to determine efficacy and human health risk.展开更多
Bioaerosols are a subset of important airborne particulates that present a substantial human health hazard due to their allergenicity and infectivity.Chemical reactions in atmospheric processes can significantly influ...Bioaerosols are a subset of important airborne particulates that present a substantial human health hazard due to their allergenicity and infectivity.Chemical reactions in atmospheric processes can significantly influence the health hazard presented by bioaerosols;however,few studies have summarized such alterations to bioaerosols and the mechanisms involved.In this paper,we systematically review the chemical modifications of bioaerosols and the impact on their health effects,mainly focusing on the exacerbation of allergic diseases such as asthma,rhinitis,and bronchitis.Oxidation,nitration,and oligomerization induced by hydroxyl radicals,ozone,and nitrogen dioxide are the major chemical modifications affecting bioaerosols,all of which can aggravate allergenicity mainly through immunoglobulin E pathways.Such processes can even interact with climate change including the greenhouse effect,suggesting the importance of bioaerosols in the future implementation of carbon neutralization strategies.In summary,the chemical modification of bioaerosols and the subsequent impact on health hazards indicate that the combined management of both chemical and biological components is required to mitigate the health hazards of particulate air pollution.展开更多
The aerosol transmission of coronavirus disease in 2019,along with the spread of other respiratory diseases,caused significant loss of life and property;it impressed upon us the importance of real-time bioaerosol dete...The aerosol transmission of coronavirus disease in 2019,along with the spread of other respiratory diseases,caused significant loss of life and property;it impressed upon us the importance of real-time bioaerosol detection.The complexity,diversity,and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring.Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods,preventing the high-resolution time-based characteristics necessary for an online approach.Through a comprehensive literature assessment,this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors.Methods applied in online bioaerosol monitoring,including adenosine triphosphate bioluminescence,laser/light-induced fluorescence spectroscopy,Raman spectroscopy,and bioaerosol mass spectrometry are summarized.The working principles,characteristics,sensitivities,and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences.Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced.Finally,an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.展开更多
基金supported by NSFC under Grant No.40705047Natural Science Foundation of Shandong Province(No.ZR2012DM003)
文摘Bioaerosols were collected by using a six-stage bioaerosols sampler from September 2007 to August 2008 in the coastal region of Qingdao, China. The terrestrial and marine microbes(including bacteria and fungi) were analyzed in order to understand the distribution features of bioaerosols. The results show that the average monthly concentrations of terrestrial bacteria, marine bacteria, terrestrial fungi and marine fungi are in the ranges of 80–615 CFU m-3, 91–468 CFU m-3, 76–647 CFU m-3 and 231–1959 CFU m-3, respectively. The concentrations of terrestrial bacteria, marine bacteria, terrestrial fungi, marine fungi and total microbes are the highest in each microbial category during fall, high in spring, and the lowest in the summer and winter. The bacterial particles are coarse in spring, autumn and winter. The sizes of fungal particle present the log-normal distribution in all the seasons.
文摘Bioaerosol emissions from animal feeding operation (AFO) facilities are of increasing interest due to the magnitude of the emissions and their potential health effect on local communities. There is limited information about fate and transport of AFO bioaerosol emissions. In this study, concentrations of airborne bacteria and fungi were measured at four ambient stations in four wind directions surrounding an egg production farm through winter, spring and summer using Andersen six-stage samplers. Mean concentrations of ambient bacteria and fungi ranged from 8.7 × 102 CFU m-3 to 1.3 × 103 CFU m-3 and from 2.8 × 102 CFU m-3 to 1.4 × 103 CFU m-3, respectively. Ambient bacterial concentrations were not significantly different over the seasons, while ambient fungal concentrations were the highest in summer and the lowest in winter. There were significant differences between downwind and upwind bacterial concentrations (p < 0.0001). Downwind bacterial and fungal concentrations responded differently to the influencing factors. Bacterial concentrations were quadratically correlated with wind vector (combined effects of wind speed and direction) and emission rate, were positively correlated with temperature, and were negatively correlated with solar radiation. Fungal concentrations were positively correlated with temperature, RH, and emission rate, and were negatively correlated with wind vector.
文摘Objective To develop a new sampling medium for detecting of bioaerosols. Methods The sampling media were tested by using Escherichia coli, Staphylococcus aureus and Serratia marcescens under static and active conditions, preliminary applications were performed using AGI-10 and high volume sampler. Results The average recovery rates were raised to 24.7%, 58.2%, 40.5%, 44.1%, 20.5%, and 15.4%, respectively in six consecutive experiments under static condition for 60 min at room temperature. Four kinds of sampling media were singled out after static experiments, which were referred to as “samplutions” PD1, PX2, TD1, and TX2, respectively. Under the active condition, the protective efficacy of PD1, PX2, TD1, and TX2 was 226% (153/47), 553% (111/17), 150% (120/48), and 268% (419/114), respectively. Conclusion The samplutions have some effects on the subsequent nucleic acid detection, which could be avoided by employing standard nucleic acid extraction procedure. The newly developed samplution can be applied to the detection of bioaerosols.
基金supported by the National Natural Science Foundation of China (No. 41775148)the Program for New Century Excellent Talents in University (No. NCET-13-0531)the Fundamental Research Funds for the Central Universities (No. 201762006)
文摘This study was conducted to evaluate the impact of hazy and foggy weather on the bacterial communities in bioaerosols, for which samples were collected from the Qingdao coastal region on sunny, foggy, and hazy days in January and March 2013. Bacterial community compositions were determined using polymerase chain reaction denaturing gradient gel electrophoresis(PCR-DGGE). The bacterial community diversity was found to be high on foggy and hazy days, and the dominant species differed during hazy weather. The Shannon-Wiener index revealed that the bacterial community diversity of coarse particles was higher than that of fine particles in the bioaerosols. The bacterial community diversity of fine particles significantly correlated with relative humidity(RH; r^2 = 0.986). The cluster analysis results indicated that the bacterial communities on sunny days differed from those on hazy and foggy days. Compared with sunny days, the bacterial communities in the fine particles during hazy weather exhibited greater changes than those in the coarse particles. Most of the sequenced bacteria were found to be closely affiliated with uncultured bacteria. During hazy weather, members of the classes Bacilli and Gammaproteobacteria(Pseudomonas and Acinetobacter) were dominant. The DGGE analysis revealed that Proteobacteria and Firmicutes were the predominant phyla, and their relative percentages to all the measured species changed significantly on hazy days, particularly in the fine particles. Haze and fog had a significant impact on the bacterial communities in bioaerosols, and the bacterial community diversity varied on different hazy days.
文摘The ongoing SARS-CoV-2 outbreak has rapidly increased the desire to manage bioaerosol exposures in indoor settings. Studies using chlorine dioxide gas (ClO<sub>2</sub>) at low concentrations have shown this intervention to be an effective mitigation strategy against viral, bacterial, and fungal elements in ambient air. There is an array of available products for generating ClO<sub>2</sub> gas however most involve the use of expensive or sophisticated technology that makes their applicability limited to specialized consumers. The purpose of this study was to determine the virucidal efficacy of three pragmatic and affordable, ClO<sub>2</sub> generating products using an aerosolized MS2 surrogate in a sealed chamber room under five different scenarios. The products tested included: Ultrashock—a ClO<sub>2</sub> releasing pod (30 ppmv), Filter Media—a ClO<sub>2</sub> impregnated zeolite media made to fit into an air blower housing (<0.01 ppmv) and Flow Stick—a smaller ClO<sub>2</sub> impregnated media filled air reactor tube (<0.01 ppmv). Testing scenarios included product deployment post MS2 bioaerosol introduction (Ultrashock and Filter Media), during MS2 bioaerosol introduction (Filter Media and Flow Stick) and prior to MS2 bioaerosol introduction (Filter Media). MS2 surface samples were collected using sterile petri-dishes and MS2 and ClO<sub>2</sub> air samples were collected from sampling ports on the outer chamber wall at 0, 90 and 180 minutes. The Ultrashock and Filter Media with air flow in the rapid sweep scenario showed the greatest reduction in air MS2 (T<sub>180</sub> = 99.992% and T<sub>180</sub> = 99.996% respectively) compared to the control (T<sub>180 </sub>= 99.6%). When compared to the control results, the filter media with air flow engaged prior to the introduction of MS2 yielded reductions of 99.87% and 99.93% in air and on surfaces respectively at T<sub>0</sub>, demonstrating the protective effect residual ClO2 has against air and surface contamination. These product formats have potential uses as remedial and preventative interventions against viral constituents in air and should undergo further evaluation to determine efficacy and human health risk.
基金supported by the National Natural Science Foundation of China(42293324,41961134034,and 21876002).
文摘Bioaerosols are a subset of important airborne particulates that present a substantial human health hazard due to their allergenicity and infectivity.Chemical reactions in atmospheric processes can significantly influence the health hazard presented by bioaerosols;however,few studies have summarized such alterations to bioaerosols and the mechanisms involved.In this paper,we systematically review the chemical modifications of bioaerosols and the impact on their health effects,mainly focusing on the exacerbation of allergic diseases such as asthma,rhinitis,and bronchitis.Oxidation,nitration,and oligomerization induced by hydroxyl radicals,ozone,and nitrogen dioxide are the major chemical modifications affecting bioaerosols,all of which can aggravate allergenicity mainly through immunoglobulin E pathways.Such processes can even interact with climate change including the greenhouse effect,suggesting the importance of bioaerosols in the future implementation of carbon neutralization strategies.In summary,the chemical modification of bioaerosols and the subsequent impact on health hazards indicate that the combined management of both chemical and biological components is required to mitigate the health hazards of particulate air pollution.
基金financially supported by National Natural Science Foundation of China(U1901210,42177410 and 42130611)Science and Technology Project of Guangdong Province,China(2021A0505030070)+2 种基金Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01Z032)Science and Technology Program of Guangzhou(202201010684)and Young S&T Talent Training Program of Guangdong Provincial Association for S&T(GDSTA),China(2022QNRC23).
文摘The aerosol transmission of coronavirus disease in 2019,along with the spread of other respiratory diseases,caused significant loss of life and property;it impressed upon us the importance of real-time bioaerosol detection.The complexity,diversity,and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring.Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods,preventing the high-resolution time-based characteristics necessary for an online approach.Through a comprehensive literature assessment,this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors.Methods applied in online bioaerosol monitoring,including adenosine triphosphate bioluminescence,laser/light-induced fluorescence spectroscopy,Raman spectroscopy,and bioaerosol mass spectrometry are summarized.The working principles,characteristics,sensitivities,and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences.Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced.Finally,an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.