The photocatalytic degradation on the bismuth containing complex oxide was revised in detail including the synthesis and classification of photocatalyts, and then the photocatalytic reaction, scavenger, and the mechan...The photocatalytic degradation on the bismuth containing complex oxide was revised in detail including the synthesis and classification of photocatalyts, and then the photocatalytic reaction, scavenger, and the mechanism of reaction. In particular, the perspectives of photocatalytic degradation on the bismuth containing oxide were analyzed in detail.展开更多
Background Artificial insemination(AI)is a routine breeding technology in animal reproduction.Nevertheless,the temperature-sensitive nature and short fertile lifespan of ram sperm samples hamper its use in AI.In this ...Background Artificial insemination(AI)is a routine breeding technology in animal reproduction.Nevertheless,the temperature-sensitive nature and short fertile lifespan of ram sperm samples hamper its use in AI.In this sense,nanotechnology is an interesting tool to improve sperm protection due to the development of nanomaterials for AI,which could be used as delivery vehicles.In this work,we explored the feasibility of vitamin E nanoemulsion(NE)for improving sperm quality during transport.Results With the aim of evaluating this proposal,ejaculates of 7 mature rams of Manchega breed were collected by artificial vagina and extended to 60×10^(6)spz/mL in AndromedR.Samples containing control and NE(12 mmol/L)with and without exogenous oxidative stress(100μmol/L Fe2+/ascorbate)were stored at 22 and 15℃and motility(CASA),viability(YO-PRO/PI),acrosomal integrity(PNA-FITC/PI),mitochondrial membrane potential(Mitotracker Deep Red 633),lipoperoxidation(C11 BODIPY 581/591),intracellular reactive oxygen species(ROS)production and DNA status(SCSAR)monitored during 96 h.Our results show that NE could be used to maintain ram spermatozoa during transport at 15 and 22℃for up to 96 h,with no appreciable loss of kinematic and physiological characteristics of freshly collected samples.Conclusions The storage of ram spermatozoa in liquid form for 2-5 d with vitamin E nanoemulsions may lead more flexibility to breeders in AI programs.In view of the potential and high versatility of these nanodevices,further studies are being carried out to assess the proposed sperm preservation medium on fertility after artificial insemination.展开更多
[ Objective] This study aimed to investigate enzymatic hydrolysis technology of glutinous rice and the oxidation resistance activity of the enzymatic hydrolysis solution. [ Method ] White glutinous rice was hydrolyzed...[ Objective] This study aimed to investigate enzymatic hydrolysis technology of glutinous rice and the oxidation resistance activity of the enzymatic hydrolysis solution. [ Method ] White glutinous rice was hydrolyzed using four kinds of proteases including neutral protease, alkaline protease, papain and trypsin. Using the scavenging rate of hydroxyl radical ( ·OH) as an indicator and appropriate protease as hydrolytic enzyme, the effects of protein substrate concentration, enzyme dosage, enzymatic hydrolysis temperature and initial pH on the abilities of proteases to scavenge hydroxyl radical from enzymatic hydrolysis solution of glutinous rice were investigated. Based on single-factor test, L9 (34) orthogonal experimental design was adopted, to determine the optimal enzymatic hydrolysis condi- tions leading to the highest oxidation resistance activity of enzymatic hydrolysis solution. [ Result] The optimized process parameters for enzymatic hydrolysis of glu- tinous rice protein with neutral protease were: protein substrate concentration of 2%, enzyme dosage of 24 000 U/g protein (protein meter), enzymatic hydrolysis temperature of 55 ℃, initial pH of 8.0, and enzymatic hydrolysis duration of 0.5 h; under these conditions, the hydroxyl radical scavenging rate could reach 56. 05% ; protein substrate concentration, enzyme dosage, enzymatic hydrolysis temperature and initial pH had extremely significant effects on the hydroxyl radical scavenging rate. In addition, the activities of antioxidant peptides in glutinous rice hydrolysates were well maintained within a temperature range of 60 - 100℃. [Condusion] The study produced theoretical feasibility reference for the production of functional base powder by spray drying.展开更多
A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit ...A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.展开更多
This article, for the first time, provides a novel advanced oxidation process based on sulfate radical (SO^4·-) to degrade organic pollutants in wastewater: microwave (MW)-activated persulfate oxidation (AP...This article, for the first time, provides a novel advanced oxidation process based on sulfate radical (SO^4·-) to degrade organic pollutants in wastewater: microwave (MW)-activated persulfate oxidation (APO) with or without active carbon (AC). Azo dye acid Orange 7 (AO7) is used as a model compound to investigate the high reactivity of MW-APO. It is found that AO7 (up to 1000 mg/L) is completely decolorized within 5-7 min under an 800 W MW furnace assisted-APO. In the presence of chloride ion (up to 0.50 mol/L), the decolorization is still 100% completed, though delayed for about 1-2 min. Experiments are made to examine the enhancement by AC. It is exciting to find that the 100% decolorization of AO7 (500 mg/L) is achieved within 3 min by MW-APO using 1.0 g/L AC as catalyst, while the degradation efficiency maintains at 50% by MW energy without persulfate after about 5 min. Besides the destruction of visible light chromophore band of AO7 (484 nm), during MW-APO, two bands in the ultraviolet region (228 nm and 310 nm) are rapidly broken down. The removal of COD is about 83%-95% for 500 mg/L AO7. SO^4·- is identified with quenching studies using specific alcohols. Both SO^4·- and ·OH could degrade AO7, but SO^4·- plays the dominant role. In a word, MW-APO AC is a new catalytic combustion technology for destruction of organic contamination even for high concentration.展开更多
Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)proce...Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)process,which combines coal gasification and high-temperature fuel cells,was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO_(2)emissions.Supported by the National Key R&D Program of China,the IGFC for nearzero CO_(2)emissions program was enacted with the goal of achieving near-zero CO_(2)emissions based on(1)catalytic combustion of the flue gas from solid oxide fuel cell(SOFC)stacks and(2)CO_(2)conversion using solid oxide electrolysis cells(SOECs).In this work,we investigated a kW-level catalytic combustion burner and SOEC stack,evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO_(2)co-electrolysis,and established a multiscale and multi-physical coupling simulation model of SOFCs and SOECs.The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.展开更多
Pervoskite-type oxides LaFe_ 1-yCu_yO_3 was prepared by citrate method. Using a fluorescent Hg lamp as irradiator, the degradation experiments of acid red 3B were carried out in the suspension system of LaFe_ 1-yCu_yO...Pervoskite-type oxides LaFe_ 1-yCu_yO_3 was prepared by citrate method. Using a fluorescent Hg lamp as irradiator, the degradation experiments of acid red 3B were carried out in the suspension system of LaFe_ 1-yCu_yO_3. The results show that the doped oxides LaFe_ 1-yCu_yO_3 have good photocatalytic oxidation property. With the study of positron annihilation, its photocatalytic activity is mainly related with defect structures resulted by doping.展开更多
Nano-TiO2 photocatalytic oxidation was used to perform the advanced treatment of biologically treated chemical comprehensive wastewater. The effects of reaction time,nano-TiO2 dosage and initial p H of the wastewater ...Nano-TiO2 photocatalytic oxidation was used to perform the advanced treatment of biologically treated chemical comprehensive wastewater. The effects of reaction time,nano-TiO2 dosage and initial p H of the wastewater on the removal rate of COD were tested. The GC/MS and EEM techniques were used to qualitatively analyze organic compounds in the wastewater before and after treatment. The result showed that after the biologically treated chemical comprehensive wastewater was treated by nano-TiO2 photocatalytic oxidation under the conditions of reaction time 3 h,nano-TiO2 dosage 8 g/L,and pH 8. 0,the effluent COD was 61. 9 mg/L and its removal rate was 63. 8%. Additionally,the species of organic pollutants reduced from 12 to 6. Meanwhile,the content of humic-like and fulvic-like substances dropped dramatically.展开更多
Sustainability is the ability to nurture or support a process for a long time without compromising the needs of future generations. Rather, sustainable chemistry is a term that refers to the production of chemical pro...Sustainability is the ability to nurture or support a process for a long time without compromising the needs of future generations. Rather, sustainable chemistry is a term that refers to the production of chemical products and processes that reduce or eliminate the use and production of hazardous substances. Green chemistry creates alternative technologies that are safer for human health and the environment to prevent further damage to human health and the environment, such as reducing the release of hazardous chemicals into the air, leading to reduced lung damage. Although sustainable and environmentally friendly technologies have evolved in other areas of science, their use in redox reactions and industry is still in its early stages. The current review aims to highlight the need for green chemistry as a sustainable chemistry and its principles and its application to produce environmentally friendly industrial products and to reduce or stop the production of harmful intermediates and products during its synthesis process.展开更多
Nanocluster formation of a metallic platinum (Pt) coating, on manganese oxide inorganic membranes impregnated with multiwall carbon nanotubes (K-OMS-2/MWCNTs), applied by reactive spray deposition technology (RSDT) is...Nanocluster formation of a metallic platinum (Pt) coating, on manganese oxide inorganic membranes impregnated with multiwall carbon nanotubes (K-OMS-2/MWCNTs), applied by reactive spray deposition technology (RSDT) is discussed. RSDT applies thin films of Pt nanoclusters on the substrate;the thickness of the film can be easily controlled. The K-OMS-2/MWCNTs fibers were enclosed by the thin film of Pt. X-ray diffraction (XRD), scanning electron microscopy/X-ray energy dispersive spectroscopy (SEM/XEDS), focus ion beam/scanning electron microscopy (FIB/SEM), transmission electron microscopy (TEM), and X-ray 3D micro-tomography (MicroXCT) which have been used to characterize the resultant Pt/K-OMS-2/MWCNTs membrane. The non-destructive characterization technique (MicroXCT) resolves the Pt layer on the upper layer of the composite membrane and also shows that the membrane is composed of sheets superimposed into stacks. The nanostructured coating on the composite membrane material has been evaluated for carbon monoxide (CO) oxidation. The functionalized Pt/K-OMS-2/MWCNTs membranes show excellent conversion (100%) of CO to CO2 at a lower temperature 200℃ compared to the uncoated K-OMS-2/MWCNTs. Moreover, the Pt/K-OMS-2/MWCNTs membranes show outstanding stability, of more than 4 days, for CO oxidation at 200℃.展开更多
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du...The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.展开更多
InGaAs/AlGaAs MQW superluminescent LED(SLED) is fabricated by using pulsed anodic oxidation and molecular beam epitaxy(MBE).The power and spectral output characteristics of three kinds of device structures are investi...InGaAs/AlGaAs MQW superluminescent LED(SLED) is fabricated by using pulsed anodic oxidation and molecular beam epitaxy(MBE).The power and spectral output characteristics of three kinds of device structures are investigated.An output power above 10 mW with FWHM of 18 nm is demonstrated at a current of 150 mA.展开更多
By using the introduced CWO technology and its 200 L/d plant, more than 10 kinds of industrial wastewaters with high concentration in China, such as the waste liquor of coking, the black liquor of paper making, the wa...By using the introduced CWO technology and its 200 L/d plant, more than 10 kinds of industrial wastewaters with high concentration in China, such as the waste liquor of coking, the black liquor of paper making, the waste mother liquor of bio-pharmacy and so on, were treated in this test research. The results showed that the CWO technology and its equipment had a good applicability for treating the industrial wastewaters with high concentration in China. One set of CWO-20 m^3/d industrial plant, as a demonstration engineering installation of CWO technology, was independently designed, made and operated in Kunming city. During the running test, the CWO-20 m^3/d plant displayed a favorable treatment capability for the bio-degradedly difficult industrial wastewaters with high concentration. For the treatment of the waste liquor from coking and the black liquor of paper making, more than 99% of CODcr and NH3-N in the wastewater could be removed. The CWO-20 m^3/d plant could be run continuously and stably. The treated wastewater could meet the discharge standard and the treatment process with CWO technology shown up a good economic advantage.展开更多
A significant driving force behind the brisk research on rechargeable batteries,particularly lithium-ion batteries(LiBs)in high-performance applications,is the development of portable devices and electric vehicles.Car...A significant driving force behind the brisk research on rechargeable batteries,particularly lithium-ion batteries(LiBs)in high-performance applications,is the development of portable devices and electric vehicles.Carbon-based materials,which have finite specific capacity,make up the anodes of LiBs.Many attempts are being made to produce novel nanostructured composite anode materials for LiBs that display cycle stability that is superior to that of graphite using graphene oxide.Therefore,using significant amounts of waste graphene oxide from used LiBs represents a fantastic opportunity to engage in waste management and circular economy.This review outlines recent studies,developments and the current advancement of graphene oxide-based LiBs,including preparation of graphene oxide and utilization in LiBs,particularly from the perspective of energy storage technology,which has drawn more and more attention to creating high-performance electrode systems.展开更多
AIM: To study the combinative effects of nanocerium and selenium in a murine model of diabetes. METHODS: Cerium oxide (CeO2) nanoparticles (60 mg/kg per day) and sodium selenite (5 μmol/kg per day) aloneor in combina...AIM: To study the combinative effects of nanocerium and selenium in a murine model of diabetes. METHODS: Cerium oxide (CeO2) nanoparticles (60 mg/kg per day) and sodium selenite (5 μmol/kg per day) aloneor in combination, or the metal form of CeO2 (60 mg/kg) were administered for 2 wk by intraperitoneal injection to streptozotocin-induced diabetic rats. At the end of treatment blood was collected, liver tissue dissected and then oxidative stress markers, extent of energy depletion and lipid prof ile were evaluated.RESULTS: Antioxidant enzymes and high density lipoprotein decreased whereas oxidative stress, adenosine diphosphate/adenosine triphospahte levels, cholesterol, triglyceride and low density lipoprotein increased on induction of diabetes. All were improved by a combination of nanocerium and sodium selenite. There was a relative amelioration by CeO2 nanoparticles or sodium selenite alone, but the metal form of CeO2 showed no signif icant improvement. CONCLUSION: The combination of nanocerium and sodium selenite is more effective than either alone in improving diabetes-induced oxidative stress.展开更多
In this study,tin oxide sensing membrane was derived by sol-gel method and was coated onto indium tin oxide (ITO) glass substrate by spin-coating technique to fabricate a pH sensing electrode.Besides,the morphology o...In this study,tin oxide sensing membrane was derived by sol-gel method and was coated onto indium tin oxide (ITO) glass substrate by spin-coating technique to fabricate a pH sensing electrode.Besides,the morphology of the tin oxide membrane has been discussed through the instrumental analysis.Furthermore,the sensing characteristics of the pH electrode was measured by commercial instrumental amplifier as the readout circuit.Owing to the sol-gel method has many advantages such as easy fabrication of gel solution,ability to dope other materials without any expensive fabricating equipment.Hence,it is suitable for the mass production of a disposable sensor.展开更多
With technology computer-aided design(TCAD)simulation software,we design a new structure of gallium oxide on gallium-nitride Schottky barrier diode(SBD).The parameters of gallium oxide are defined as new material para...With technology computer-aided design(TCAD)simulation software,we design a new structure of gallium oxide on gallium-nitride Schottky barrier diode(SBD).The parameters of gallium oxide are defined as new material parameters in the material library,and the SBD turn-on and breakdown behavior are simulated.The simulation results reveal that this new structure has a larger turn-on current than Ga2O3 SBD and a larger breakdown voltage than Ga N SBD.Also,to solve the lattice mismatch problem in the real epitaxy,we add a Zn O layer as a transition layer.The simulations show that the device still has good properties after adding this layer.展开更多
基金Supported by the Self-raised Project for the Basic Research for Application of Yunnan Province(2013FZ109)the Follow-up Project of Qujing Normal University for the National Natural Science Foundation(2106512005)+1 种基金the Innovation and Entrepreneurship Project for College Students of Qujing Normal Universitythe Project for Innovation Team of the Applied Chemical Material Preparation of Qujing Normal University(2106531001)
文摘The photocatalytic degradation on the bismuth containing complex oxide was revised in detail including the synthesis and classification of photocatalyts, and then the photocatalytic reaction, scavenger, and the mechanism of reaction. In particular, the perspectives of photocatalytic degradation on the bismuth containing oxide were analyzed in detail.
基金the financial support,grants AGL2017-85603-P,PID2020-120281RB-100 and PID2020-117788RB-100 funded by MCIN/AEI/10,13039/501100011033grants SBPLY/21/180501/000111 and SBPLY/21/180501/000050 funded by JCCM by EU through Fondo Europeo de Desarrollo Regional+1 种基金supported by a UCLM scholarshipsupported by a JCCM scholarship
文摘Background Artificial insemination(AI)is a routine breeding technology in animal reproduction.Nevertheless,the temperature-sensitive nature and short fertile lifespan of ram sperm samples hamper its use in AI.In this sense,nanotechnology is an interesting tool to improve sperm protection due to the development of nanomaterials for AI,which could be used as delivery vehicles.In this work,we explored the feasibility of vitamin E nanoemulsion(NE)for improving sperm quality during transport.Results With the aim of evaluating this proposal,ejaculates of 7 mature rams of Manchega breed were collected by artificial vagina and extended to 60×10^(6)spz/mL in AndromedR.Samples containing control and NE(12 mmol/L)with and without exogenous oxidative stress(100μmol/L Fe2+/ascorbate)were stored at 22 and 15℃and motility(CASA),viability(YO-PRO/PI),acrosomal integrity(PNA-FITC/PI),mitochondrial membrane potential(Mitotracker Deep Red 633),lipoperoxidation(C11 BODIPY 581/591),intracellular reactive oxygen species(ROS)production and DNA status(SCSAR)monitored during 96 h.Our results show that NE could be used to maintain ram spermatozoa during transport at 15 and 22℃for up to 96 h,with no appreciable loss of kinematic and physiological characteristics of freshly collected samples.Conclusions The storage of ram spermatozoa in liquid form for 2-5 d with vitamin E nanoemulsions may lead more flexibility to breeders in AI programs.In view of the potential and high versatility of these nanodevices,further studies are being carried out to assess the proposed sperm preservation medium on fertility after artificial insemination.
基金Supported by Education Reform Project of Jiangxi Province(No.JXJG-20084-27)
文摘[ Objective] This study aimed to investigate enzymatic hydrolysis technology of glutinous rice and the oxidation resistance activity of the enzymatic hydrolysis solution. [ Method ] White glutinous rice was hydrolyzed using four kinds of proteases including neutral protease, alkaline protease, papain and trypsin. Using the scavenging rate of hydroxyl radical ( ·OH) as an indicator and appropriate protease as hydrolytic enzyme, the effects of protein substrate concentration, enzyme dosage, enzymatic hydrolysis temperature and initial pH on the abilities of proteases to scavenge hydroxyl radical from enzymatic hydrolysis solution of glutinous rice were investigated. Based on single-factor test, L9 (34) orthogonal experimental design was adopted, to determine the optimal enzymatic hydrolysis condi- tions leading to the highest oxidation resistance activity of enzymatic hydrolysis solution. [ Result] The optimized process parameters for enzymatic hydrolysis of glu- tinous rice protein with neutral protease were: protein substrate concentration of 2%, enzyme dosage of 24 000 U/g protein (protein meter), enzymatic hydrolysis temperature of 55 ℃, initial pH of 8.0, and enzymatic hydrolysis duration of 0.5 h; under these conditions, the hydroxyl radical scavenging rate could reach 56. 05% ; protein substrate concentration, enzyme dosage, enzymatic hydrolysis temperature and initial pH had extremely significant effects on the hydroxyl radical scavenging rate. In addition, the activities of antioxidant peptides in glutinous rice hydrolysates were well maintained within a temperature range of 60 - 100℃. [Condusion] The study produced theoretical feasibility reference for the production of functional base powder by spray drying.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60536030,61036002,60776024,60877035 and 61036009)National High Technology Research and Development Program of China(Grant Nos.2007AA04Z329 and 2007AA04Z254)
文摘A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.
文摘This article, for the first time, provides a novel advanced oxidation process based on sulfate radical (SO^4·-) to degrade organic pollutants in wastewater: microwave (MW)-activated persulfate oxidation (APO) with or without active carbon (AC). Azo dye acid Orange 7 (AO7) is used as a model compound to investigate the high reactivity of MW-APO. It is found that AO7 (up to 1000 mg/L) is completely decolorized within 5-7 min under an 800 W MW furnace assisted-APO. In the presence of chloride ion (up to 0.50 mol/L), the decolorization is still 100% completed, though delayed for about 1-2 min. Experiments are made to examine the enhancement by AC. It is exciting to find that the 100% decolorization of AO7 (500 mg/L) is achieved within 3 min by MW-APO using 1.0 g/L AC as catalyst, while the degradation efficiency maintains at 50% by MW energy without persulfate after about 5 min. Besides the destruction of visible light chromophore band of AO7 (484 nm), during MW-APO, two bands in the ultraviolet region (228 nm and 310 nm) are rapidly broken down. The removal of COD is about 83%-95% for 500 mg/L AO7. SO^4·- is identified with quenching studies using specific alcohols. Both SO^4·- and ·OH could degrade AO7, but SO^4·- plays the dominant role. In a word, MW-APO AC is a new catalytic combustion technology for destruction of organic contamination even for high concentration.
基金This work was financially supported by the National Key R&D Program of China(2017YFB0601904).
文摘Changes are needed to improve the efficiency and lower the CO_(2)emissions of traditional coal-fired power generation,which is the main source of global CO_(2)emissions.The integrated gasification fuel cell(IGFC)process,which combines coal gasification and high-temperature fuel cells,was proposed in 2017 to improve the efficiency of coal-based power generation and reduce CO_(2)emissions.Supported by the National Key R&D Program of China,the IGFC for nearzero CO_(2)emissions program was enacted with the goal of achieving near-zero CO_(2)emissions based on(1)catalytic combustion of the flue gas from solid oxide fuel cell(SOFC)stacks and(2)CO_(2)conversion using solid oxide electrolysis cells(SOECs).In this work,we investigated a kW-level catalytic combustion burner and SOEC stack,evaluated the electrochemical performance of the SOEC stack in H2O electrolysis and H2O/CO_(2)co-electrolysis,and established a multiscale and multi-physical coupling simulation model of SOFCs and SOECs.The process developed in this work paves the way for the demonstration and deployment of IGFC technology in the future.
文摘Pervoskite-type oxides LaFe_ 1-yCu_yO_3 was prepared by citrate method. Using a fluorescent Hg lamp as irradiator, the degradation experiments of acid red 3B were carried out in the suspension system of LaFe_ 1-yCu_yO_3. The results show that the doped oxides LaFe_ 1-yCu_yO_3 have good photocatalytic oxidation property. With the study of positron annihilation, its photocatalytic activity is mainly related with defect structures resulted by doping.
文摘Nano-TiO2 photocatalytic oxidation was used to perform the advanced treatment of biologically treated chemical comprehensive wastewater. The effects of reaction time,nano-TiO2 dosage and initial p H of the wastewater on the removal rate of COD were tested. The GC/MS and EEM techniques were used to qualitatively analyze organic compounds in the wastewater before and after treatment. The result showed that after the biologically treated chemical comprehensive wastewater was treated by nano-TiO2 photocatalytic oxidation under the conditions of reaction time 3 h,nano-TiO2 dosage 8 g/L,and pH 8. 0,the effluent COD was 61. 9 mg/L and its removal rate was 63. 8%. Additionally,the species of organic pollutants reduced from 12 to 6. Meanwhile,the content of humic-like and fulvic-like substances dropped dramatically.
文摘Sustainability is the ability to nurture or support a process for a long time without compromising the needs of future generations. Rather, sustainable chemistry is a term that refers to the production of chemical products and processes that reduce or eliminate the use and production of hazardous substances. Green chemistry creates alternative technologies that are safer for human health and the environment to prevent further damage to human health and the environment, such as reducing the release of hazardous chemicals into the air, leading to reduced lung damage. Although sustainable and environmentally friendly technologies have evolved in other areas of science, their use in redox reactions and industry is still in its early stages. The current review aims to highlight the need for green chemistry as a sustainable chemistry and its principles and its application to produce environmentally friendly industrial products and to reduce or stop the production of harmful intermediates and products during its synthesis process.
文摘Nanocluster formation of a metallic platinum (Pt) coating, on manganese oxide inorganic membranes impregnated with multiwall carbon nanotubes (K-OMS-2/MWCNTs), applied by reactive spray deposition technology (RSDT) is discussed. RSDT applies thin films of Pt nanoclusters on the substrate;the thickness of the film can be easily controlled. The K-OMS-2/MWCNTs fibers were enclosed by the thin film of Pt. X-ray diffraction (XRD), scanning electron microscopy/X-ray energy dispersive spectroscopy (SEM/XEDS), focus ion beam/scanning electron microscopy (FIB/SEM), transmission electron microscopy (TEM), and X-ray 3D micro-tomography (MicroXCT) which have been used to characterize the resultant Pt/K-OMS-2/MWCNTs membrane. The non-destructive characterization technique (MicroXCT) resolves the Pt layer on the upper layer of the composite membrane and also shows that the membrane is composed of sheets superimposed into stacks. The nanostructured coating on the composite membrane material has been evaluated for carbon monoxide (CO) oxidation. The functionalized Pt/K-OMS-2/MWCNTs membranes show excellent conversion (100%) of CO to CO2 at a lower temperature 200℃ compared to the uncoated K-OMS-2/MWCNTs. Moreover, the Pt/K-OMS-2/MWCNTs membranes show outstanding stability, of more than 4 days, for CO oxidation at 200℃.
基金supported by the National Natural Science Foundation of China(No.U1960202).
文摘The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.
基金Sponsored by the National Nature Science Foundation of China(60474026,60477010)
文摘InGaAs/AlGaAs MQW superluminescent LED(SLED) is fabricated by using pulsed anodic oxidation and molecular beam epitaxy(MBE).The power and spectral output characteristics of three kinds of device structures are investigated.An output power above 10 mW with FWHM of 18 nm is demonstrated at a current of 150 mA.
文摘By using the introduced CWO technology and its 200 L/d plant, more than 10 kinds of industrial wastewaters with high concentration in China, such as the waste liquor of coking, the black liquor of paper making, the waste mother liquor of bio-pharmacy and so on, were treated in this test research. The results showed that the CWO technology and its equipment had a good applicability for treating the industrial wastewaters with high concentration in China. One set of CWO-20 m^3/d industrial plant, as a demonstration engineering installation of CWO technology, was independently designed, made and operated in Kunming city. During the running test, the CWO-20 m^3/d plant displayed a favorable treatment capability for the bio-degradedly difficult industrial wastewaters with high concentration. For the treatment of the waste liquor from coking and the black liquor of paper making, more than 99% of CODcr and NH3-N in the wastewater could be removed. The CWO-20 m^3/d plant could be run continuously and stably. The treated wastewater could meet the discharge standard and the treatment process with CWO technology shown up a good economic advantage.
文摘A significant driving force behind the brisk research on rechargeable batteries,particularly lithium-ion batteries(LiBs)in high-performance applications,is the development of portable devices and electric vehicles.Carbon-based materials,which have finite specific capacity,make up the anodes of LiBs.Many attempts are being made to produce novel nanostructured composite anode materials for LiBs that display cycle stability that is superior to that of graphite using graphene oxide.Therefore,using significant amounts of waste graphene oxide from used LiBs represents a fantastic opportunity to engage in waste management and circular economy.This review outlines recent studies,developments and the current advancement of graphene oxide-based LiBs,including preparation of graphene oxide and utilization in LiBs,particularly from the perspective of energy storage technology,which has drawn more and more attention to creating high-performance electrode systems.
基金Supported by a grant from Tehran University of Medical Science, No. 11250 (in part)
文摘AIM: To study the combinative effects of nanocerium and selenium in a murine model of diabetes. METHODS: Cerium oxide (CeO2) nanoparticles (60 mg/kg per day) and sodium selenite (5 μmol/kg per day) aloneor in combination, or the metal form of CeO2 (60 mg/kg) were administered for 2 wk by intraperitoneal injection to streptozotocin-induced diabetic rats. At the end of treatment blood was collected, liver tissue dissected and then oxidative stress markers, extent of energy depletion and lipid prof ile were evaluated.RESULTS: Antioxidant enzymes and high density lipoprotein decreased whereas oxidative stress, adenosine diphosphate/adenosine triphospahte levels, cholesterol, triglyceride and low density lipoprotein increased on induction of diabetes. All were improved by a combination of nanocerium and sodium selenite. There was a relative amelioration by CeO2 nanoparticles or sodium selenite alone, but the metal form of CeO2 showed no signif icant improvement. CONCLUSION: The combination of nanocerium and sodium selenite is more effective than either alone in improving diabetes-induced oxidative stress.
文摘In this study,tin oxide sensing membrane was derived by sol-gel method and was coated onto indium tin oxide (ITO) glass substrate by spin-coating technique to fabricate a pH sensing electrode.Besides,the morphology of the tin oxide membrane has been discussed through the instrumental analysis.Furthermore,the sensing characteristics of the pH electrode was measured by commercial instrumental amplifier as the readout circuit.Owing to the sol-gel method has many advantages such as easy fabrication of gel solution,ability to dope other materials without any expensive fabricating equipment.Hence,it is suitable for the mass production of a disposable sensor.
文摘With technology computer-aided design(TCAD)simulation software,we design a new structure of gallium oxide on gallium-nitride Schottky barrier diode(SBD).The parameters of gallium oxide are defined as new material parameters in the material library,and the SBD turn-on and breakdown behavior are simulated.The simulation results reveal that this new structure has a larger turn-on current than Ga2O3 SBD and a larger breakdown voltage than Ga N SBD.Also,to solve the lattice mismatch problem in the real epitaxy,we add a Zn O layer as a transition layer.The simulations show that the device still has good properties after adding this layer.