期刊文献+
共找到286,401篇文章
< 1 2 250 >
每页显示 20 50 100
Investigating and predicting the role of photovoltaic, wind, and hydrogen energies in sustainable global energy evolution
1
作者 Mahmood Swadi Dheyaa Jasim Kadhim +3 位作者 Mohamed Salem Firas Mohammed Tuaimah Ammar Sabri Majeed Ali Jawad Alrubaie 《Global Energy Interconnection》 EI CSCD 2024年第4期429-445,共17页
The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities ... The global shift toward next-generation energy systems is propelled by the urgent need to combat climate change and the dwindling supply of fossil fuels.This review explores the intricate challenges and opportunities for transitioning to sustainable renewable energy sources such as solar,wind,and hydrogen.This transition economically challenges traditional energy sectors while fostering new industries,promoting job growth,and sustainable economic development.The transition to renewable energy demands social equity,ensuring universal access to affordable energy,and considering community impact.The environmental benefits include a significant reduction in greenhouse gas emissions and a lesser ecological footprint.This study highlights the rapid growth of the global wind power market,which is projected to increase from$112.23 billion in 2022 to$278.43 billion by 2030,with a compound annual growth rate of 13.67%.In addition,the demand for hydrogen is expected to increase,significantly impacting the market with potential cost reductions and making it a critical renewable energy source owing to its affordability and zero emissions.By 2028,renewables are predicted to account for 42%of global electricity generation,with significant contributions from wind and solar photovoltaic(PV)technology,particularly in China,the European Union,the United States,and India.These developments signify a global commitment to diversifying energy sources,reducing emissions,and moving toward cleaner and more sustainable energy solutions.This review offers stakeholders the insights required to smoothly transition to sustainable energy,setting the stage for a resilient future. 展开更多
关键词 Next energy Renewable energy SUSTAINABILITY Environmental benefits Economic opportunities
下载PDF
Heavy ion energy influence on multiple-cell upsets in small sensitive volumes:from standard to high energies
2
作者 Yang Jiao Li-Hua Mo +10 位作者 Jin-Hu Yang Yu-Zhu Liu Ya-Nan Yin Liang Wang Qi-Yu Chen Xiao-Yu Yan Shi-Wei Zhao Bo Li You-Mei Sun Pei-Xiong Zhao Jie Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期109-121,共13页
The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area o... The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques. 展开更多
关键词 28 nm static random access memory(SRAM) energy effects Heavy ion Multiple-cell upset(MCU) Charge collection Inverse cosine law
下载PDF
Crosstalk between degradation and bioenergetics: how autophagy and endolysosomal processes regulate energy production
3
作者 Angelid Pabon Jagannatham Naidu Bhupana Ching-On Wong 《Neural Regeneration Research》 SCIE CAS 2025年第3期671-681,共11页
Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy... Cells undergo metabolic reprogramming to adapt to changes in nutrient availability, cellular activity, and transitions in cell states. The balance between glycolysis and mitochondrial respiration is crucial for energy production, and metabolic reprogramming stipulates a shift in such balance to optimize both bioenergetic efficiency and anabolic requirements. Failure in switching bioenergetic dependence can lead to maladaptation and pathogenesis. While cellular degradation is known to recycle precursor molecules for anabolism, its potential role in regulating energy production remains less explored. The bioenergetic switch between glycolysis and mitochondrial respiration involves transcription factors and organelle homeostasis, which are both regulated by the cellular degradation pathways. A growing body of studies has demonstrated that both stem cells and differentiated cells exhibit bioenergetic switch upon perturbations of autophagic activity or endolysosomal processes. Here, we highlighted the current understanding of the interplay between degradation processes, specifically autophagy and endolysosomes, transcription factors, endolysosomal signaling, and mitochondrial homeostasis in shaping cellular bioenergetics. This review aims to summarize the relationship between degradation processes and bioenergetics, providing a foundation for future research to unveil deeper mechanistic insights into bioenergetic regulation. 展开更多
关键词 AUTOPHAGY BIOENERGETICS endolysosome energy production GLYCOLYSIS metabolic reprogramming MITOCHONDRIA
下载PDF
Studies on heteronuclear diatomic molecular dissociation energies using algebraic energy method 被引量:2
4
作者 范开敏 任维义 +2 位作者 刘艳 王阿暑 刘松红 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第6期1641-1649,共9页
The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1... The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1∑+ state of LiH, A3∏(1) state of IC1, X^1∑+ state of CsH, A(3∏1) and B0+(3∏) states of CIF, 21∏ state of KRb, X^1∑+ state of CO, and c^3∑+ state of NaK molecule. The results show that the values of De computed by using the AEM are satisfactorily accurate compared with experimental ones. The AEM can serve as an economic and useful tool to generate a reliable De within an allowed experimental error for the electronic states whose molecular dissociation energies are unavailable from the existing literature 展开更多
关键词 algebraic energy method dissociation energy vibrational energy electronic excited states
下载PDF
Theoretical Prediction of Gibbs Free Energies of Formation for Crystallineα-MOOH andα-M_2O_3 Based on a Linear Free-Energy Relationship 被引量:1
5
作者 SUN Xiaoming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第3期656-660,共5页
In the present study,the modified Sverjensky-Molling equation,derived from a linear-free energy relationship,is used to predict the Gibbs free energies of formation of crystalline phases ofα-MOOH (with a goethite st... In the present study,the modified Sverjensky-Molling equation,derived from a linear-free energy relationship,is used to predict the Gibbs free energies of formation of crystalline phases ofα-MOOH (with a goethite structure)andα-M_2O_3(with a hematite structure)from the known thermodynamic properties of the corresponding aqueous trivalent cations(M^(3+)).The modified equation is expressed asΔG_(f,M_VX)~0=a_(M_VX)ΔG_(0,M^(3+))^(0)+b_(M_VX)+β_(M_VXγM^(3+)),where the coefficients a_(M_VX),b_(M_VX),andβ_(M_VX) characterize a particular structural family of M_VX(M is a trivalent cation[M^(3+)]and X represents the remainder of the composition of solid);γ^(3+)is the ionic radius of trivalent cations(M^(3+));ΔG_(f,M_VX)~0 is the standard Gibbs free energy of formation of M_vX;andΔG_(n,M^(3+))~0 is the non-solvation energy of trivalent cations(M^(3+)).By fitting the equation to the known experimental thermodynamic data,the coefficients for the goethite family(α-MOOH)are a_(M_VX)=0.8838,b_(M_VX)=-424.4431(kcal/mol),andβ_(M_VX)=115(kcal/ mol.(?)),while the coefficients for the hematite family(α-M_2O_3)are a_(M_VX)=1.7468,b_(M_VX)=-814.9573(kcal/ mol),andβ_(M_VX)=278(kcal/mol.(?)).The constrained relationship can be used to predict the standard Gibbs free energies of formation of crystalline phases and fictive phases(i.e.phases that are thermodynamically unstable and do not occur at standard conditions)within the isostructural families of goethite(α-MOOH)and hematite(α-M_2O_3)if the standard Gibbs free energies of formation of the trivalent cations are known. 展开更多
关键词 α-MOOH α-M_2O_3 Gibbs free energy theoretical prediction
下载PDF
2024 Adult Compendium of Physical Activities:A third update of the energy costs of human activities 被引量:10
6
作者 Stephen D.Herrmann Erik A.Willis +10 位作者 Barbara E.Ainsworth Tiago V.Barreira Mary Hastert Chelsea L.Kracht John M.Schuna Jr. Zhenghui Cai Minghui Quan Catrine Tudor-Locke Melicia C.Whitt-Glover David R. Jacobs Jr. 《Journal of Sport and Health Science》 SCIE CSCD 2024年第1期6-12,共7页
Background:The Compendium of Physical Activities was published in 1993 to improve the comparability of energy expenditure values assigned to self-reported physical activity(PA)across studies.The original version was u... Background:The Compendium of Physical Activities was published in 1993 to improve the comparability of energy expenditure values assigned to self-reported physical activity(PA)across studies.The original version was updated in 2000,and again in 2011,and has been widely used to support PA research,practice,and public health guidelines.Methods:This 2024 update was tailored for adults 19-59 years of age by removing data from those≥60 years.Using a systematic review and supplementary searches,we identified new activities and their associated measured metabolic equivalent(MET)values(using indirect calorimetry)published since 2011.We replaced estimated METs with measured values when possible.Results:We screened 32,173 abstracts and 1507 full-text papers and extracted 2356 PA energy expenditure values from 701 papers.We added303 new PAs and adjusted 176 existing MET values and descriptions to reflect the addition of new data and removal of METs for older adults.We added a Major Heading(Video Games).The 2024 Adult Compendium includes 1114 PAs(912 with measured and 202 with estimated values)across 22 Major Headings.Conclusion:This comprehensive update and refinement led to the creation of The 2024 Adult Compendium,which has utility across research,public health,education,and healthcare domains,as well as in the development of consumer health technologies.The new website with the complete lists of PAs and supporting resources is available at https://pacompendium.com. 展开更多
关键词 ADULTS energy expenditure EXERCISE MET Physical Activities
下载PDF
Older Adult Compendium of Physical Activities:Energy costs of human activities in adults aged 60 and older 被引量:6
7
作者 Erik A.Willis Stephen D.Herrmann +8 位作者 Mary Hastert Chelsea L.Kracht Tiago V.Barreira John M.Schuna Jr. Zhenghua Cai Minghui Quan Scott A.Conger Wendy J.Brown Barbara E.Ainsworth 《Journal of Sport and Health Science》 SCIE CSCD 2024年第1期13-17,F0003,共6页
Purpose:To describe the development of a Compendium for estimating the energy costs of activities in adults>60 years(OA Compendium).Methods:Physical activities(PAs)and their metabolic equivalent of task(MET)values ... Purpose:To describe the development of a Compendium for estimating the energy costs of activities in adults>60 years(OA Compendium).Methods:Physical activities(PAs)and their metabolic equivalent of task(MET)values were obtained from a systematic search of studies published in 4 sport and exercise databases(PubMed,Embase,SPORTDiscus(EBSCOhost),and Scopus)and a review of articles included in the 2011 Adult Compendium that measured PA in older adults.MET values were computed as the oxygen cost(VO_(2),mL/kg/min)during PA divided by 2.7 m L/kg/min(MET_(60+))to account for the lower resting metabolic rate in older adults.Results:We identified 68 articles and extracted energy expenditure data on 427 PAs.From these,we derived 99 unique Specific Activity codes with corresponding MET_(60+)values for older adults.We developed a website to present the OA Compendium MET_(60+)values:https://pacompendium.com.Conclusion:The OA Compendium uses data collected from adults>60 years for more accurate estimation of the energy cost of PAs in older adults.It is an accessible resource that will allow researchers,educators,and practitioners to find MET_(60+)values for older adults for use in PA research and practice. 展开更多
关键词 energy expenditure EXERCISE MET Older adults
下载PDF
Accurate studies on the full vibrational energy spectra and molecular dissociation energies for some electronic states of halogen molecule
8
作者 吕建良 任维义 +1 位作者 徐平川 陈太红 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期209-215,共7页
This paper obtains accurate vibrational spectroscopic constants and full vibrational energy spectrum by the al- gebraic method (AM) for some electronic states of halogen diatomic molecules. Motivated by the recent s... This paper obtains accurate vibrational spectroscopic constants and full vibrational energy spectrum by the al- gebraic method (AM) for some electronic states of halogen diatomic molecules. Motivated by the recent success of obtaining the dissociation energies of Li2 molecule by using a new analytical formula, it further extends the formula to study the dissociation energies of halogen diatomic molecules. The results show that the AM spectrum and the theoretical dissociation energies agree well with RKR data and experimental data respectively. 展开更多
关键词 vibrational energy dissociation energy halogen molecule algebraic method
下载PDF
Recent advances in graphene-based phase change composites for thermal energy storage and management 被引量:2
9
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo Suxi Wang Zhiyuan Liu Xian Jun Loh 《Nano Materials Science》 EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 Phase change material NANOCOMPOSITES Solar energy Sustainable energy Thermo-regulation
下载PDF
Metal-organic framework-based single-atom electro-/ photocatalysts: Synthesis, energy applications, and opportunities 被引量:3
10
作者 Munir Ahmad Jiahui Chen +10 位作者 Jianwen Liu Yan Zhang Zhongxin Song Shahzad Afzal Waseem Raza Liaqat Zeb Andleeb Mehmood Arshad Hussain Jiujun Zhang Xian-Zhu Fu Jing-Li Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期1-43,共43页
Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de... Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs. 展开更多
关键词 carbon energy generation MOF-derived-supported MOF-supported single atoms
下载PDF
Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion 被引量:1
11
作者 Roshan M.Bhattarai Kisan Chhetri +5 位作者 Nghia Le Debendra Acharya Shirjana Saud Mai Cao Hoang Phuong Lan Nguyen Sang Jae Kim Young Sun Mok 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期72-93,共22页
The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storag... The metal-organic framework(MOF)derived Ni–Co–C–N composite alloys(NiCCZ)were“embedded”inside the carbon cloth(CC)strands as opposed to the popular idea of growing them upward to realize ultrastable energy storage and conversion application.The NiCCZ was then oxygen functionalized,facilitating the next step of stoichiometric sulfur anion diffusion during hydrothermal sulfurization,generating a flower-like metal hydroxysulfide structure(NiCCZOS)with strong partial implantation inside CC.Thus obtained NiCCZOS shows an excellent capacity when tested as a supercapacitor electrode in a three-electrode configuration.Moreover,when paired with the biomass-derived nitrogen-rich activated carbon,the asymmetric supercapacitor device shows almost 100%capacity retention even after 45,000 charge–discharge cycles with remarkable energy density(59.4 Wh kg^(-1)/263.8μWh cm^(–2))owing to a uniquely designed cathode.Furthermore,the same electrode performed as an excellent bifunctional water-splitting electrocatalyst with an overpotential of 271 mV for oxygen evolution reaction(OER)and 168.4 mV for hydrogen evolution reaction(HER)at 10 mA cm−2 current density along with 30 h of unhinged chronopotentiometric stability performance for both HER and OER.Hence,a unique metal chalcogenide composite electrode/substrate configuration has been proposed as a highly stable electrode material for flexible energy storage and conversion applications. 展开更多
关键词 carbon cloth energy conversion energy storage FLEXIBLE metal embedding ultra-stable
下载PDF
Co-Harvest Phase-Change Enthalpy and Isomerization Energy for High-Energy Heat Output by Controlling Crystallization of Alkyl-Grafted Azobenzene Molecules 被引量:1
12
作者 Jian Gao Yiyu Feng +6 位作者 Wenyu Fang Hui Wang Jing Ge Xiaoyu Yang Huitao Yu Mengmeng Qin Wei Feng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期415-424,共10页
Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperature... Photoisomerization-induced phase change are important for co-harvesting the latent heat and isomerization energy of azobenzene molecules.Chemically optimizing heat output and energy delivery at alternating temperatures are challenging because of the differences in crystallizability and isomerization.This article reports two series of asymmetrically alkyl-grafted azobenzene(Azo-g),with and without a methyl group,that have an optically triggered phase change.Three exothermic modes were designed to utilize crystallization enthalpy(△H_(c))and photothermal(isomerization)energy(△H_(p))at different temperatures determined by the crystallization.Azo-g has high heat output(275-303 J g^(-1))by synchronously releasing△H_(c)and△H_(p)over a wide temperature range(-79℃to 25℃).We fabricated a new distributed energy utilization and delivery system to realize a temperature increase of 6.6℃at a temperature of-8℃.The findings offer insight into selective utilization of latent heat and isomerization energy by molecular optimization of crystallization and isomerization processes. 展开更多
关键词 crystallizability distributed energy utilization system energy density exothermic modes ISOMERIZATION
下载PDF
Impact of Sustainable Electricity for Cameroonian Population through Energy Efficiency and Renewable Energies
13
作者 Fotsing Metegam Isabelle Flora Njomo Donatien +2 位作者 Njomo Donatien René Tchinda Oumarou Hamandjoda 《Journal of Power and Energy Engineering》 2019年第9期11-51,共41页
Access to electricity and a reliable supply of energy are essential elements of local economic development and poverty reduction. To address these challenges, appropriate policies and mechanisms at the national and re... Access to electricity and a reliable supply of energy are essential elements of local economic development and poverty reduction. To address these challenges, appropriate policies and mechanisms at the national and regional levels need to be implemented. In this study, we used Johanson cointegration and Granger causality techniques to examine the different cointegration and causal relationships that exist between the growth of electricity consumption (CE) and socio-economic parameters (GDP, tertiary GDP, GDP per capita, number of households, number of subscribers and population) in Cameroon during the period from 1975 to 2011. The results from the software Eviews 7.2 show that there are cointegration relationships between electricity consumption and socio-economic indicators (LGDPH, LPO and LS) thus reflecting the long-term relationship between socio-economic growth and electricity consumption (CE). Consumption growth could, therefore, follow socio-economic growth. In addition, the analysis of the Granger causality test results reveals that there is a unidirectional causal relationship of macroeconomic indicators towards electricity consumption. That is, LGDPG to LCE, LGDPH to LCE, and LGDPT to LCE. There is also a unidirectional relationship between LCE and the demographic indicators that is the relationship of LCE to LS (number of subscribers). We can, therefore, conclude that the indicators that have a better influence on electricity consumption are the overall GDP for the macroeconomic indicators and the population for the socio-demographic indicators respectively. In addition, the analysis of renewable energy potential (EnRs) shows us that Cameroon enjoys good irradiation throughout its territory, hence its high solar potential. The wind speed is unevenly distributed over the territory, it has an average speed in the region of the very north of the country, but a low speed in the rest of the territory, which justifies the low wind potential in the country. We also noticed that the forest is concentrated in the southernmost part of the country, mainly in the eastern and southern regions. After study, we concluded that it is possible to truncate thermal power plants with renewable energy plants. We proposed to trade the thermal power stations of additions by biomass plants. We also offer hybrid solar-biomass power plants for isolated power plants;and solar-wind hybrid power plants for the Far North region of the country, given its strong wind power potential. We also identified the sources of over-consumption and estimated the amount of energy that could be saved by developing an energy efficiency plan (10%) with the standard scenario that would take into account good energy-saving practices. We then estimated at 336,938 Kg the gain in CO2 emissions if we exchanged the thermal power stations into EnRs. Recommendations are then suggested for the successful implementation of an energy efficiency plan and implementation of renewable energy in Cameroon. 展开更多
关键词 energy Efficiency RENEWABLE energy COINTEGRATION CAUSALITY FOSSIL Fuels Mini-Grids
下载PDF
Significantly Improved High-Temperature Energy Storage Performance of BOPP Films by Coating Nanoscale Inorganic Layer 被引量:3
14
作者 Tiandong Zhang Hainan Yu +5 位作者 Young Hoon Jung Changhai Zhang Yu Feng Qingguo Chen Keon Jae Lee Qingguo Chi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期30-38,共9页
Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high tempe... Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films. 展开更多
关键词 coating layer energy storage interfacial barrier polymer films
下载PDF
Clean Conversion of Biomass Energy by Bio-electrochemical System
15
作者 Jiqiang ZHANG Qiong ZHANG 《Agricultural Biotechnology》 CAS 2017年第6期49-51,共3页
Biomass energy is an important constituent of the world's future sustainable energy source system, but current biomass energy conversion techniques have low efficiency and cause secondary pollution to environment eas... Biomass energy is an important constituent of the world's future sustainable energy source system, but current biomass energy conversion techniques have low efficiency and cause secondary pollution to environment easily. Bio-eleetrochemical system (BES) appeared in recent years could realize the clean efficient con- version of biomass energy, and has become a research hotspot in the biomass energy field. In this study, the research and application of BES in biomass energy con- version were overviewed, and the existing problems were analyzed. 展开更多
关键词 Biomass energy bio-electrochemical system Clean conversion
下载PDF
Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink 被引量:3
16
作者 Hongyan CHEN Youcheng ZENG +2 位作者 Hu DING Siukai LAI Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期389-406,共18页
With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm... With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES. 展开更多
关键词 ASYMMETRIC nonlinear energy sink(NES) tristable vibration control po-tential barrier
下载PDF
Moderate Fields, Maximum Potential: Achieving High Records with Temperature‑Stable Energy Storage in Lead‑Free BNT‑Based Ceramics 被引量:1
17
作者 Wenjing Shi Leiyang Zhang +7 位作者 Ruiyi Jing Yunyao Huang Fukang Chen Vladimir Shur Xiaoyong Wei Gang Liu Hongliang Du Li Jin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期184-200,共17页
The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystora... The increasing awareness of environmental concerns has prompted a surge in the exploration of leadfree,high-power ceramic capacitors.Ongoing efforts to develop leadfree dielectric ceramics with exceptional energystorage performance(ESP)have predominantly relied on multicomponent composite strategies,often accomplished under ultrahigh electric fields.However,this approach poses challenges in insulation and system downsizing due to the necessary working voltage under such conditions.Despite extensive study,bulk ceramics of(Bi_(0.5)Na_(0.5))TiO_(3)(BNT),a prominent lead-free dielectric ceramic family,have seldom achieved a recoverable energy-storage(ES)density(Wrec)exceeding 7 J cm^(−3).This study introduces a novel approach to attain ceramic capacitors with high ESP under moderate electric fields by regulating permittivity based on a linear dielectric model,enhancing insulation quality,and engineering domain structures through chemical formula optimization.The incorporation of SrTiO_(3)(ST)into the BNT matrix is revealed to reduce the dielectric constant,while the addition of Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)aids in maintaining polarization.Additionally,the study elucidates the methodology to achieve high ESP at moderate electric fields ranging from 300 to 500 kV cm^(−1).In our optimized composition,0.5(Bi_(0.5)Na_(0.4)K_(0.1))TiO_(3)–0.5(2/3ST-1/3BMN)(B-0.5SB)ceramics,we achieved a Wrec of 7.19 J cm^(−3) with an efficiency of 93.8%at 460 kV cm^(−1).Impressively,the B-0.5SB ceramics exhibit remarkable thermal stability between 30 and 140℃ under 365 kV cm^(−1),maintaining a Wrec exceeding 5 J cm^(−3).This study not only establishes the B-0.5SB ceramics as promising candidates for ES materials but also demonstrates the feasibility of optimizing ESP by modifying the dielectric constant under specific electric field conditions.Simultaneously,it provides valuable insights for the future design of ceramic capacitors with high ESP under constraints of limited electric field. 展开更多
关键词 BNT energy storage LEAD-FREE Relaxor ferroelectrics Capacitors
下载PDF
Research on a TOPSIS energy efficiency evaluation system for crude oil gathering and transportation systems based on a GA-BP neural network 被引量:1
18
作者 Xue-Qiang Zhang Qing-Lin Cheng +2 位作者 Wei Sun Yi Zhao Zhi-Min Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期621-640,共20页
As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud... As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems. 展开更多
关键词 Crude oil gathering and transportation system GA-BP neural network energy efficiency evaluation TOPSIS evaluation method energy saving and consumption reduction
下载PDF
Development status and prospect of underground thermal energy storage technology 被引量:1
19
作者 Ying-nan Zhang Yan-guang Liu +3 位作者 Kai Bian Guo-qiang Zhou Xin Wang Mei-hua Wei 《Journal of Groundwater Science and Engineering》 2024年第1期92-108,共17页
Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te... Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES. 展开更多
关键词 Aquifer thermal energy storage Borehole thermal energy storage Cavern thermal energy storage Thermal energy storage technology Benefit evaluation
下载PDF
Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community:a comparative analysis 被引量:2
20
作者 Guolong Zhao Biao Zhao +5 位作者 Wenfeng Ding Lianjia Xin Zhiwen Nian Jianhao Peng Ning He Jiuhua Xu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期190-271,共82页
The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,su... The aerospace community widely uses difficult-to-cut materials,such as titanium alloys,high-temperature alloys,metal/ceramic/polymer matrix composites,hard and brittle materials,and geometrically complex components,such as thin-walled structures,microchannels,and complex surfaces.Mechanical machining is the main material removal process for the vast majority of aerospace components.However,many problems exist,including severe and rapid tool wear,low machining efficiency,and poor surface integrity.Nontraditional energy-assisted mechanical machining is a hybrid process that uses nontraditional energies(vibration,laser,electricity,etc)to improve the machinability of local materials and decrease the burden of mechanical machining.This provides a feasible and promising method to improve the material removal rate and surface quality,reduce process forces,and prolong tool life.However,systematic reviews of this technology are lacking with respect to the current research status and development direction.This paper reviews the recent progress in the nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in the aerospace community.In addition,this paper focuses on the processing principles,material responses under nontraditional energy,resultant forces and temperatures,material removal mechanisms,and applications of these processes,including vibration-,laser-,electric-,magnetic-,chemical-,advanced coolant-,and hybrid nontraditional energy-assisted mechanical machining.Finally,a comprehensive summary of the principles,advantages,and limitations of each hybrid process is provided,and future perspectives on forward design,device development,and sustainability of nontraditional energy-assisted mechanical machining processes are discussed. 展开更多
关键词 difficult-to-cut materials geometrically complex components nontraditional energy mechanical machining aerospace community
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部