Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie te...Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie temperature and instability in air,it is hard to realize practical applications for the reported layered magnetic materials at present.In this paper,we developed a space-confined chemical vapor deposition method to synthesize ultrathin air-stable ε-Fe_(2)O_(3) nanosheets with Curie temperature above 350 K.The ε-Fe_(2)O_(3)/NbSe_(2) heterojunction was constructed to study the magnetic proximity effect on the superconductivity of the NbSe_(2) multilayer.The electrical transport results show that the subtle proximity effect can modulate the interfacial spin–orbit interaction while undegrading the superconducting critical parameters.Our work paves the way to construct 2D heterojunctions with ultrathin nonlayered materials and layered van der Waals(vdW)materials for exploring new physical phenomena.展开更多
Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_...Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators.展开更多
It has been known that metal FeSiCr powders with large average particle sizes have been typically employed to prepare magnetic powder cores(SMCs),with few studies reported on the influence of magnetic properties for o...It has been known that metal FeSiCr powders with large average particle sizes have been typically employed to prepare magnetic powder cores(SMCs),with few studies reported on the influence of magnetic properties for original powders with various average particle sizes less than 10m.In this work,SiO_(2)-coated FeSiCr SMCs with different small particle sizes were synthesized using the sol-gel process.The contribution of SiO_(2)coating amount and voids to the soft magnetic properties was elaborated.The mechanism was revealed such that smaller particle sizes with less voids could be beneficial for reducing core loss in the SMCs.By optimizing the core structure,permeability and magnetic loss of 26 and 262 kW/cm^(3)at 100 kHz and 50 mT were achieved at a particle size of 4.8m and ethyl orthosilicate addition of 0.1 mL/g.The best DC stacking performance,reaching 87%,was observed at an ethyl orthosilicate addition rate of 0.25 mL/g under 100 Oe.Compared to other soft magnetic composites(SMCs),the FeSiCr/SiO_(2)SMCs exhibit significantly reduced magnetic loss.It further reduces the magnetic loss of the powder core,providing a new strategy for applications of SMCs at high frequencies.展开更多
Magnetic topological semimetal can host various topological non-trivial states leading to exotic novel transport properties.Here we report the systematic magneto-transport studies on the Heusler alloy Nb_(x)Zr_(1-x)Co...Magnetic topological semimetal can host various topological non-trivial states leading to exotic novel transport properties.Here we report the systematic magneto-transport studies on the Heusler alloy Nb_(x)Zr_(1-x)Co_(2)Sn considered as a ferromagnetic(FM)Weyl semimetal.The cusp anomaly of temperature-dependent resistivity and large isotropic negative magneto-resistivity(MR)emerge around the FM transition consistent with the theoretical half-metallic predictions.The prominent anomalous Hall effect(AHE)has the same behavior with the applied field along various crystal directions.The Nb doping introduces more disorder resulting in the enhancement of the upturn for the temperature-dependent resistivity in low temperatures.With Nb doping,the AHE exhibits systemic evolution with the Fermi level lifted.At the doping level of x=0.25,the AHE mainly originates from the intrinsic contribution related to non-trivial topological Weyl states.展开更多
A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processi...A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processing module.A segmented superposition algorithm is used to increase target signal and reduce the random noise.The results show that under unshielded,room temperature conditions,the system achieves successful detection of weak magnetic fields down to 2 pT with a notable sensitivity of 1.84×10^(8)V/T(G=1000).By applying 17 overlays,the segmented superposition algorithm increases the power proportion of the target signal at 31 Hz from6.89%to 45.91%,surpassing the power proportion of the 2 Hz low-frequency interference signal.Simultaneously,it reduces the power proportion of the 20 Hz random noise.The segmented superposition process effectively cancels out certain random noise elements,leading to a reduction in their respective power proportions.This high-sensitivity magnetic sensing system features a simple structure,and is easy to operate,making it highly valuable for both practical applications and broader dissemination.展开更多
Using micromagnetic simulations, we demonstrate the tilted perpendicular anisotropy-induced spin-orbit ratchet effect. In spin-orbit torque(SOT)-induced magnetization switching, the critical currents required to switc...Using micromagnetic simulations, we demonstrate the tilted perpendicular anisotropy-induced spin-orbit ratchet effect. In spin-orbit torque(SOT)-induced magnetization switching, the critical currents required to switch between the two magnetization states(upward and downward magnetization) are asymmetric. In addition, in the nanowire structure, tilted anisotropy induces formation of tilted domain walls(DWs). The tilted DWs exhibit a ratchet behavior during motion. The ratchet effect during switching and DW motions can be tuned by changing the current direction with respect to the tilting direction of anisotropy. The ratchet motion of the DWs can be used to mimic the leaky-integrate-fire function of a biological neuron, especially the asymmetric property of the “potential” and “reset” processes. Our results provide a full understanding of the influence of tilted perpendicular anisotropy on SOT-induced magnetization switching and DW motion, and are beneficial for designs of further SOT-based devices.展开更多
Comprehensive Summary To better understand the impact of different anions on the structures and SCO properties of the CoII SCO complexes,six new complexes[Co(terpy-CH_(2)OH)_(2)]A_(2)·sol(terpy-CH_(2)OH=4′-(hydr...Comprehensive Summary To better understand the impact of different anions on the structures and SCO properties of the CoII SCO complexes,six new complexes[Co(terpy-CH_(2)OH)_(2)]A_(2)·sol(terpy-CH_(2)OH=4′-(hydroxymethyl)-2,2′;6′,2″-terpyridine,A=Br–(1,sol=1.5H_(2)O),I–(2),N3–(3,sol=2H_(2)O),H_(3)BCN–(4),OTf–(5),and TsO–(6,sol=4H_(2)O·CH_(3)CN),have been synthesized and characterized.All six compounds consist of mononuclear[Co(terpy-CH_(2)OH)_(2)]^(2+)cations and charge-balancing anions that differ in size,shape,and hydrogen bonding capacity.Complexes 1,2,3,and 6 displayed incomplete gradual SCO transitions,whereas 4 and 5 exhibited abrupt hysteretic spin transitions with loops of 12 and 16 K(250.0—262.0 K for 4,and 370.0—386.0 K for 5,respectively),closely resembling our previously reported complexes with SCN^(–)and SeCN^(–)anions.The occurrence of the order-disorder transition of the CH2OH groups and their transition temperatures are determined by the size and hydrogen bonding capability of the anions.Remarkably,the transition temperatures of complexes with H_(3)BCN^(–),SCN^(–),OTf^(–),and SeCN^(–)anions exhibit an upward trend as the size and mass of the anions increase,as confirmed through detailed single crystal structure analyses conducted in both high-spin and low-spin states for all four complexes.展开更多
The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracte...The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.展开更多
We report on the magnetization and anomalous Hall effect(AHE)in the high-quality single crystals of the kagome magnet YbMn_(6)Sn_(6),where the spins of the Mn atoms in the kagome lattice order ferromagnetically and th...We report on the magnetization and anomalous Hall effect(AHE)in the high-quality single crystals of the kagome magnet YbMn_(6)Sn_(6),where the spins of the Mn atoms in the kagome lattice order ferromagnetically and the intermediate-valence Yb atoms are nonmagnetic.The intrinsic mechanism plays a crucial role in the AHE,leading to an enhanced anomalous Hall conductivity(AHC)compared with the other rare-earth RMn_(6)Sn_(6)compounds.Our band structure calculation reveals a strong hybridization between the 4f electrons of Yb and conduction electrons.展开更多
Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared...Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared to that in ferromagnetic(FM)system.It can persist to the temperatures above AF transition and exhibit strong angular field dependence.The phase diagram reveals various magnetic states by rotating the applied field.By analyzing the anisotropic transport behavior,magnon contributions are revealed and exhibit obvious angular dependence with a spin-flop vanishing line.The observed prominent planar Hall effect and anisotropic magnetoresisitivity exhibit two-fold systematical angular dependent oscillations.These behaviors are attributed to the scattering from spin–orbital coupling instead of nontrivial topological origin.Our results reveal anisotropic interactions of magnetism and electron in V5S8,suggesting potential opportunities for the AF spintronic sensor and devices.展开更多
Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mo...Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mode Decomposition(EMD),an adaptive multiscale analysis method for nonlinear and non-stationary signals,is widely used in geophysical and geodetic data processing.Compared with traditional EMD,Improved Complete Ensemble EMD with Adaptive Noise(ICEEMDAN)is more effective in addressing the problem of mode mixing.Based on the principles of 1D ICEEMDAN,this paper presents an alternative algorithm for 2D ICEEMDAN,extending its application to two-dimensional scenarios.The effectiveness of the proposed approach is demonstrated through synthetic signal experiments,which show that the 2D ICEEMDAN exhibits a weaker mode mixing effect compared to the traditional bidimensional EMD(BEMD)method.Furthermore,to improve the performance of the denoising method based on 2D ICEEMDAN and preserve useful signals in high-frequency components,an improved soft thresholding technique is introduced.Synthetic magnetic anomaly data testing indicates that our denoising method effectively preserves signal continuity and outperforms traditional soft thresholding methods.To validate the practical application of this improved threshold denoising method based on 2D ICEEMDAN,it is applied to ground magnetic survey data in the Yandun area of Xinjiang.The results demonstrate the effectiveness of the method in removing noise while retaining essential information from practical magnetic anomaly data.In particular,practical applications suggest that 2D ICEEMDAN can extract trend signals more accurately than the BEMD.In conclusion,as a potential tool for multi-scale decomposition,the 2D ICEEMDAN is versatile in processing and analyzing 2D geophysical and geodetic data.展开更多
This paper reports a multifunctional magnetic-photoelectric laminate device based on the integration of spintronic material(La_(0.7)Sr_(0.3)MnO_(3))and multiferroic(Ni-doped BiFeO_(3)),in which the repeatable modulati...This paper reports a multifunctional magnetic-photoelectric laminate device based on the integration of spintronic material(La_(0.7)Sr_(0.3)MnO_(3))and multiferroic(Ni-doped BiFeO_(3)),in which the repeatable modulation effect on the photoelectric properties were achieved by applying external magnetic fields.More obviously,photocurrent density(J)of the laminate was largely enhanced,the change rate of J up to 287.6%is obtained.This sensing function effect should be attributed to the low-field magnetoresistance effect in perovskite manganite and the scattering of spin photoelectron in multiferroic material.The laminate perfectly combines the functions of sensor and controller,which can not only reflect the intensity of environmental magnetic field,but also modulate the photoelectric conversion performance.This work provides an alternative and facile way to realize multi-degree-of-freedom control for photoelectric conversion performances and lastly miniaturize multifunction device.展开更多
The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-princip...The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-principles calculation demonstrates that these compounds are ferromagnetic indirect semiconductors,and the energy band gaps of NiX_(2)for X=Cl,Br,and I are 3.888,3.134,and 2.157 eV,respectively.The magnetic moments of Ni atoms in NiX_(2)monolayer are 1.656,1.588,1.449μB,and their magneto-crystalline anisotropy energies are 0.167,0.029,0.090 meV,respectively.Based on the macro-linear response theory,we systematically studied the influences of the external magnetic field and out-of-plane strain on the magneto-optical Kerr effect(MOKE)spectrum of the NiX_(2)single layer.It is found that,when the external magnetic field is perpendicular to the sample plane,the value of the Kerr rotation angle reaches the maximum,and the single-layer NiI_(2)material has a Kerr rotation angle of 1.89°at the photon energy of 1.986 eV.Besides,the Kerr rotation spectrum of NiCl_(2)and NiBr_(2)monolayers redshift as the out-of-plane strain increases,while NiI_(2)monolayer blueshifts.Accurate computation of the MOKE spectrum of NiX_(2)materials provides an opportunity for applications of 2D magnetic material ranging from sensing to data storing.展开更多
In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical...In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical and experimental curves of magnetizations and magnetic entropy changes, −ΔSM(T). Based on the mean-field generated −ΔSM(T), the substantial Temperature-averaged Entropy Change (TEC) values reinforce the appropriateness of these materials for use in magnetic refrigeration technology within TEC (10) values of 1 and 0.57 J∙kg−1∙K−1under 1 T applied magnetic field.展开更多
Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic...Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.展开更多
BACKGROUND Aortic coarctation is a potentially fatal condition that is primarily treated surgically.Despite successful procedures,patients frequently experience postoperative anxiety and depression,which can hinder re...BACKGROUND Aortic coarctation is a potentially fatal condition that is primarily treated surgically.Despite successful procedures,patients frequently experience postoperative anxiety and depression,which can hinder recovery and worsen outcomes.Pharmacological interventions,such as 5-hydroxytryptamine(5-HT)and norepinephrine reuptake inhibitors,are commonly prescribed;however,their efficacy alone or in combination with non-invasive brain stimulation techniques,such as repetitive transcranial magnetic stimulation(TMS),remains unclear.AIM To assess the effect of medications and TMS on post-aortic surgery anxiety and depression.METHODS We analyzed the outcomes of 151 patients with anxiety and depression who were hospitalized for aortic dissection between January 2020 and September 2022.Using the random number table method,75 and 76 patients were allocated to the normal control and study groups,respectively.All the patients were treated using routine procedures.The control group was administered anti-anxiety and antidepression drugs,whereas the study group was treated with TMS in addition to these medications.The patients in both groups showed improvement after two courses of treatment.The Hamilton Anxiety Scale(HAMA)and the Hamilton Depression Scale(HAMD)were used to assess anxiety and depression,respectively.The serum levels of brain-derived neurotrophic factor(BDNF)and 5-HT were determined using enzyme-linked immunosorbent assay.The Pittsburgh Sleep Quality Index(PSQI)was used to estimate sleep quality,and the Repeatable Battery for the Assessment of Neuropsychological Status(RBANS)was used to assess cognitive function.RESULTS The HAMD and HAMA scores reduced in 2 groups,with the study group achieving a lower level than control(P<0.05).In the control group,43 patients recovered,17 showed improvement,and 15 were deemed invalid.In the study group,52 recovered,20 improved,and four were invalid.The efficacy rate in study group was 94.74%compared to 80.00%in control(P<0.05).The BDNF and 5-HT levels increased in both groups,with higher levels observed in the experimental group(P<0.05).Moreover,the PSQI scores decreased in 2 groups,but were lower in the intervention group than control(P<0.05).The scores of the RBANS items increased,with the study group scoring higher than control(P<0.05).CONCLUSION Combining anti-anxiety and anti-depressive drugs with repetitive TMS after aortic surgery may enhance mood and treatment outcomes,offering a promising clinical approach.展开更多
We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagona...We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagonal structure(space group: P63/cm) and exhibit a successive complicated magnetic phase transition. The extensive magnetic phase transitions contribute to the broad temperature range of MCEs exhibiting in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds, with maximum magnetic entropy change(-ΔSM_(max)) and refrigeration capacity of 10.2 J·kg^(-1)·K^(-1), 356.3 J/kg and 11.5 J·kg^(-1)·K^(-1),393.3 J/kg under varying magnetic fields 0–5 T, respectively. Remarkably, the δTFWHMvalues(the temperature range corresponding to 1/2×|-ΔSM_(max)|) of Er5Si3Bx(x=0.3,0.6) compounds were up to 41.8 K and 39.6 K, respectively. Thus, the present work provides a potential magnetic refrigeration material with a broad temperature range MCEs for applications in cryogenic magnetic refrigerators.展开更多
In the field of ultrafast magnetism,i.e.,subpicosecond or femtosecond time scales,the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation.In terms of this equation,the intrinsic ...In the field of ultrafast magnetism,i.e.,subpicosecond or femtosecond time scales,the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation.In terms of this equation,the intrinsic characteristics are investigated in detail for the theoretical limit of the magnetization reversal field.We can find that there is a critical value for the inertia parameterτ_(c),which is affected by the damping and anisotropy parameter of the system.When the inertial parameter factorτ<τ_(c),the limit value of the magnetization reversal field under the ultrafast magnetic mechanism is smaller than that of the fast magnetic mechanism.Whenτ>τ_(c),the limit value of the magnetization reversal field will be larger than the limit value under the fast magnetic mechanism.Moreover,it is important to point out that the limit value of the magnetization reversal field under the ultrafast magnetic mechanism decreases with the increasing inertial factor,asτ<τ_(c)/2,which increases with inertial factorτasτ>τ_(c)/2.Finally,with the joint action of damping and anisotropy,compared with fast magnetism,we find that the limit value of the magnetization reversal field has rich variation characteristics,i.e.,there is not only a linear and proportional relationship,but also an inverse relationship,which is very significant for the study of ultrafast magnetism.展开更多
We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous...We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous Hall effect(AHE) due to Co-3d electrons. With Nd-4f electronic magnetism, ferrimagnetic NdCo_(2)As_(2) manifests pronounced sign reversal and multiple hysteresis loops in temperature-and field-dependent magnetization, Hall resistivity, and magnetoresistance, due to complicated magnetic structural changes. We reveal that the AHE for NdCo_(2)As_(2) is stemming from the Co sub-lattice and deduce its phase diagram which includes magnetic compensation and two meta-magnetic phase transitions. The sensitivity of the Hall effect on the details of the magnetic structures in ferrimagnetic NdCo_(2)As_(2) provides a unique opportunity to explore the magnetic interaction between 4f and 3d electrons and its impact on the electronic structure.展开更多
Materials with strongly coupled magnetic and electronic degrees of freedom provide new possibilities for practical applications.In this paper,we have investigated the structure,magnetic property,and magnetodielectric(...Materials with strongly coupled magnetic and electronic degrees of freedom provide new possibilities for practical applications.In this paper,we have investigated the structure,magnetic property,and magnetodielectric(MD) effect in Ho_(2)Cu_(2)O_(5) and Yb_(2)Cu_(2)O_(5) poly crystalline samples,which possess a non-centrosymmetric polar structure with space group Pna2_(1).In Ho_(2)Cu_(2)O_(5),Ho^(3+) and Cu^(2+) sublattices order simultaneously,exhibiting a typical paramagnetic to antiferromagnetic transition at 13.1 K.While for Yb_(2)Cu_(2)O_(5),two magnetic transitions which originate from the orderings of Yb^(3+)(7.8 K) and Cu^(2+)(13.5 K) sublattices are observed.A magnetic field induced metamagnetic transition is obtained in these two cuprates below Neel temperature(T_(N)).By means of dielectric measurement,distinct MD effect is demonstrated by the dielectric anomaly at T_(N.)Meanwhile,the MD effect is found to be directly related to the metamagnetic transition.Due to the specific spin configuration and different spin evolution in the magnetic field,a positive MD effect is formed in Ho_(2)Cu_(2)O_(5),and a negative one is observed in Yb_(2)Cu_(2)O_(5).The spontaneous dielectric anomaly at T_(N) is regarded as arising from the shifts in optical phonon frequencies,and the magnetoelectric coupling is used to interpret the magnetic field induced MD effect.Moreover,an H-T phase diagram is constructed for Ho_(2)Cu_(2)O_(5) and Yb_(2)Cu_(2)O_(5) based on the results of isothermal magnetic and dielectric hysteresis loops.展开更多
基金The work is supported by the National Key Research and Development Program of China(Grant No.2022YFA1204104)the National Natural Science Foundation of China(Grant No.61888102)the Chinese Academy of Sciences(Grant Nos.ZDBS-SSW-WHC001 and XDB33030100).
文摘Two-dimensional(2D)magnet/superconductor heterostructures can promote the design of artificial materials for exploring 2D physics and device applications by exotic proximity effects.However,plagued by the low Curie temperature and instability in air,it is hard to realize practical applications for the reported layered magnetic materials at present.In this paper,we developed a space-confined chemical vapor deposition method to synthesize ultrathin air-stable ε-Fe_(2)O_(3) nanosheets with Curie temperature above 350 K.The ε-Fe_(2)O_(3)/NbSe_(2) heterojunction was constructed to study the magnetic proximity effect on the superconductivity of the NbSe_(2) multilayer.The electrical transport results show that the subtle proximity effect can modulate the interfacial spin–orbit interaction while undegrading the superconducting critical parameters.Our work paves the way to construct 2D heterojunctions with ultrathin nonlayered materials and layered van der Waals(vdW)materials for exploring new physical phenomena.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52371203 and 52271192)the Ministry of Science and Technology of China(Grant No.2021YFB3501201)。
文摘Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators.
基金supported by the National Natural Science Foundation of China(Grant Nos.U2230119 and U23A20567)2022 Central Guidance on Local Science and Technology Development Projects(Grant No.2022ZYDF073)Outstanding Youth Fund of Sichuan Province(Grant No.22JCQN0005).
文摘It has been known that metal FeSiCr powders with large average particle sizes have been typically employed to prepare magnetic powder cores(SMCs),with few studies reported on the influence of magnetic properties for original powders with various average particle sizes less than 10m.In this work,SiO_(2)-coated FeSiCr SMCs with different small particle sizes were synthesized using the sol-gel process.The contribution of SiO_(2)coating amount and voids to the soft magnetic properties was elaborated.The mechanism was revealed such that smaller particle sizes with less voids could be beneficial for reducing core loss in the SMCs.By optimizing the core structure,permeability and magnetic loss of 26 and 262 kW/cm^(3)at 100 kHz and 50 mT were achieved at a particle size of 4.8m and ethyl orthosilicate addition of 0.1 mL/g.The best DC stacking performance,reaching 87%,was observed at an ethyl orthosilicate addition rate of 0.25 mL/g under 100 Oe.Compared to other soft magnetic composites(SMCs),the FeSiCr/SiO_(2)SMCs exhibit significantly reduced magnetic loss.It further reduces the magnetic loss of the powder core,providing a new strategy for applications of SMCs at high frequencies.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFF0718400 and 2023YFA1406500)the National Natural Science Foundation of China (Grant Nos.U2130101 and 92165204)+2 种基金the Natural Science Foundation of Guangdong Province,China (Grant No.2022A1515010035)the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices (Grant No.2022B1212010008)the Open Project of Key Laboratory of Optoelectronic Materials and Technologies (Grant No.OEMT-2023-ZTS-01)。
文摘Magnetic topological semimetal can host various topological non-trivial states leading to exotic novel transport properties.Here we report the systematic magneto-transport studies on the Heusler alloy Nb_(x)Zr_(1-x)Co_(2)Sn considered as a ferromagnetic(FM)Weyl semimetal.The cusp anomaly of temperature-dependent resistivity and large isotropic negative magneto-resistivity(MR)emerge around the FM transition consistent with the theoretical half-metallic predictions.The prominent anomalous Hall effect(AHE)has the same behavior with the applied field along various crystal directions.The Nb doping introduces more disorder resulting in the enhancement of the upturn for the temperature-dependent resistivity in low temperatures.With Nb doping,the AHE exhibits systemic evolution with the Fermi level lifted.At the doping level of x=0.25,the AHE mainly originates from the intrinsic contribution related to non-trivial topological Weyl states.
基金National Natural Science Foundation of China(No.51977214)。
文摘A high-sensitivity magnetic sensing system based on giant magneto-impedance(GMI)effect is designed and fabricated.The system comprises a GMI sensor equipped with a gradient probe and an signal acquisition and processing module.A segmented superposition algorithm is used to increase target signal and reduce the random noise.The results show that under unshielded,room temperature conditions,the system achieves successful detection of weak magnetic fields down to 2 pT with a notable sensitivity of 1.84×10^(8)V/T(G=1000).By applying 17 overlays,the segmented superposition algorithm increases the power proportion of the target signal at 31 Hz from6.89%to 45.91%,surpassing the power proportion of the 2 Hz low-frequency interference signal.Simultaneously,it reduces the power proportion of the 20 Hz random noise.The segmented superposition process effectively cancels out certain random noise elements,leading to a reduction in their respective power proportions.This high-sensitivity magnetic sensing system features a simple structure,and is easy to operate,making it highly valuable for both practical applications and broader dissemination.
基金supported by the National Natural Science Foundation of China (Grant No.12274108)the Natural Science Foundation of Zhejiang Province (Grant Nos.LY23A040008 and LY23A040008)the Basic Scientific Research Project of Wenzhou (Grant No.G20220025)。
文摘Using micromagnetic simulations, we demonstrate the tilted perpendicular anisotropy-induced spin-orbit ratchet effect. In spin-orbit torque(SOT)-induced magnetization switching, the critical currents required to switch between the two magnetization states(upward and downward magnetization) are asymmetric. In addition, in the nanowire structure, tilted anisotropy induces formation of tilted domain walls(DWs). The tilted DWs exhibit a ratchet behavior during motion. The ratchet effect during switching and DW motions can be tuned by changing the current direction with respect to the tilting direction of anisotropy. The ratchet motion of the DWs can be used to mimic the leaky-integrate-fire function of a biological neuron, especially the asymmetric property of the “potential” and “reset” processes. Our results provide a full understanding of the influence of tilted perpendicular anisotropy on SOT-induced magnetization switching and DW motion, and are beneficial for designs of further SOT-based devices.
基金supported by the National Natural Science Foundation of China(22273036,21973039)Y.-C S.acknowledges the support from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0108).
文摘Comprehensive Summary To better understand the impact of different anions on the structures and SCO properties of the CoII SCO complexes,six new complexes[Co(terpy-CH_(2)OH)_(2)]A_(2)·sol(terpy-CH_(2)OH=4′-(hydroxymethyl)-2,2′;6′,2″-terpyridine,A=Br–(1,sol=1.5H_(2)O),I–(2),N3–(3,sol=2H_(2)O),H_(3)BCN–(4),OTf–(5),and TsO–(6,sol=4H_(2)O·CH_(3)CN),have been synthesized and characterized.All six compounds consist of mononuclear[Co(terpy-CH_(2)OH)_(2)]^(2+)cations and charge-balancing anions that differ in size,shape,and hydrogen bonding capacity.Complexes 1,2,3,and 6 displayed incomplete gradual SCO transitions,whereas 4 and 5 exhibited abrupt hysteretic spin transitions with loops of 12 and 16 K(250.0—262.0 K for 4,and 370.0—386.0 K for 5,respectively),closely resembling our previously reported complexes with SCN^(–)and SeCN^(–)anions.The occurrence of the order-disorder transition of the CH2OH groups and their transition temperatures are determined by the size and hydrogen bonding capability of the anions.Remarkably,the transition temperatures of complexes with H_(3)BCN^(–),SCN^(–),OTf^(–),and SeCN^(–)anions exhibit an upward trend as the size and mass of the anions increase,as confirmed through detailed single crystal structure analyses conducted in both high-spin and low-spin states for all four complexes.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403400,2019YFA0704900,and 2022YFA1403800)the Fundamental Science Center of the National Natural Science Foundation of China(Grant No.52088101)+4 种基金the National Natural Science Foundation of China(Grant Nos.11974394 and 12174426)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB33000000)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-057)the Synergetic Extreme Condition User Facility(Grant No.SECUF)the Scientific Instrument Developing Project of CAS(Grant No.ZDKYYQ20210003).
文摘The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12141002,12225401,and 12274154)the National Key Research and Development Program of China(Grant No.2021YFA1401902)+1 种基金the CAS Interdisciplinary Innovation Teamthe Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘We report on the magnetization and anomalous Hall effect(AHE)in the high-quality single crystals of the kagome magnet YbMn_(6)Sn_(6),where the spins of the Mn atoms in the kagome lattice order ferromagnetically and the intermediate-valence Yb atoms are nonmagnetic.The intrinsic mechanism plays a crucial role in the AHE,leading to an enhanced anomalous Hall conductivity(AHC)compared with the other rare-earth RMn_(6)Sn_(6)compounds.Our band structure calculation reveals a strong hybridization between the 4f electrons of Yb and conduction electrons.
基金Project supported by the open research fund of Songshan Lake Materials Laboratory(Grant No.2021SLABFN11)the National Natural Science Foundation of China(Grant Nos.U2130101 and 92165204)+5 种基金Natural Science Foundation of Guangdong Province(Grant No.2022A1515010035)Guangzhou Basic and Applied Basic Research Foundation(Grant No.202201011798)the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices(Grant No.2022B1212010008)the Open Project of Key Laboratory of Optoelectronic Materials and Technologies(Grant No.OEMT-2023-ZTS-01)the National Key R&D Program of China(Grant Nos.2023YFF0718400 and 2023YFA1406500)(national)college students innovation and entrepreneurship training program,Sun Yat-sen University(Grant No.202310359).
文摘Systemically angular and planar transport investigations are performed in layered antiferromagnetic(AF)V_(5)S_(8).In this AF system,obvious anomalous Hall effect(AHE)is observed with a large Hall angle of 0.1 compared to that in ferromagnetic(FM)system.It can persist to the temperatures above AF transition and exhibit strong angular field dependence.The phase diagram reveals various magnetic states by rotating the applied field.By analyzing the anisotropic transport behavior,magnon contributions are revealed and exhibit obvious angular dependence with a spin-flop vanishing line.The observed prominent planar Hall effect and anisotropic magnetoresisitivity exhibit two-fold systematical angular dependent oscillations.These behaviors are attributed to the scattering from spin–orbital coupling instead of nontrivial topological origin.Our results reveal anisotropic interactions of magnetism and electron in V5S8,suggesting potential opportunities for the AF spintronic sensor and devices.
基金supported by the National Natural Science Foundation of China(No.42174090 and No.42250103)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(No.MSFGPMR2022-4)+1 种基金the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(No.GLAB2023ZR02)the Fundamental Research Funds for the Central Universities。
文摘Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mode Decomposition(EMD),an adaptive multiscale analysis method for nonlinear and non-stationary signals,is widely used in geophysical and geodetic data processing.Compared with traditional EMD,Improved Complete Ensemble EMD with Adaptive Noise(ICEEMDAN)is more effective in addressing the problem of mode mixing.Based on the principles of 1D ICEEMDAN,this paper presents an alternative algorithm for 2D ICEEMDAN,extending its application to two-dimensional scenarios.The effectiveness of the proposed approach is demonstrated through synthetic signal experiments,which show that the 2D ICEEMDAN exhibits a weaker mode mixing effect compared to the traditional bidimensional EMD(BEMD)method.Furthermore,to improve the performance of the denoising method based on 2D ICEEMDAN and preserve useful signals in high-frequency components,an improved soft thresholding technique is introduced.Synthetic magnetic anomaly data testing indicates that our denoising method effectively preserves signal continuity and outperforms traditional soft thresholding methods.To validate the practical application of this improved threshold denoising method based on 2D ICEEMDAN,it is applied to ground magnetic survey data in the Yandun area of Xinjiang.The results demonstrate the effectiveness of the method in removing noise while retaining essential information from practical magnetic anomaly data.In particular,practical applications suggest that 2D ICEEMDAN can extract trend signals more accurately than the BEMD.In conclusion,as a potential tool for multi-scale decomposition,the 2D ICEEMDAN is versatile in processing and analyzing 2D geophysical and geodetic data.
基金financially supported by National Natural Science Foundation of China(11074031)National Key R&D Program of China(2017YFE0301401)Natural Science Foundation of Fujian Province,China(2020J01192,2021J01191)
文摘This paper reports a multifunctional magnetic-photoelectric laminate device based on the integration of spintronic material(La_(0.7)Sr_(0.3)MnO_(3))and multiferroic(Ni-doped BiFeO_(3)),in which the repeatable modulation effect on the photoelectric properties were achieved by applying external magnetic fields.More obviously,photocurrent density(J)of the laminate was largely enhanced,the change rate of J up to 287.6%is obtained.This sensing function effect should be attributed to the low-field magnetoresistance effect in perovskite manganite and the scattering of spin photoelectron in multiferroic material.The laminate perfectly combines the functions of sensor and controller,which can not only reflect the intensity of environmental magnetic field,but also modulate the photoelectric conversion performance.This work provides an alternative and facile way to realize multi-degree-of-freedom control for photoelectric conversion performances and lastly miniaturize multifunction device.
文摘The full-potential linearized augmented plane wave plus local orbital method is utilized for exploring the electronic,magnetic,and magneto-optical properties of the NiX_(2)(X=Cl,Br,and I)single layer.The first-principles calculation demonstrates that these compounds are ferromagnetic indirect semiconductors,and the energy band gaps of NiX_(2)for X=Cl,Br,and I are 3.888,3.134,and 2.157 eV,respectively.The magnetic moments of Ni atoms in NiX_(2)monolayer are 1.656,1.588,1.449μB,and their magneto-crystalline anisotropy energies are 0.167,0.029,0.090 meV,respectively.Based on the macro-linear response theory,we systematically studied the influences of the external magnetic field and out-of-plane strain on the magneto-optical Kerr effect(MOKE)spectrum of the NiX_(2)single layer.It is found that,when the external magnetic field is perpendicular to the sample plane,the value of the Kerr rotation angle reaches the maximum,and the single-layer NiI_(2)material has a Kerr rotation angle of 1.89°at the photon energy of 1.986 eV.Besides,the Kerr rotation spectrum of NiCl_(2)and NiBr_(2)monolayers redshift as the out-of-plane strain increases,while NiI_(2)monolayer blueshifts.Accurate computation of the MOKE spectrum of NiX_(2)materials provides an opportunity for applications of 2D magnetic material ranging from sensing to data storing.
文摘In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical and experimental curves of magnetizations and magnetic entropy changes, −ΔSM(T). Based on the mean-field generated −ΔSM(T), the substantial Temperature-averaged Entropy Change (TEC) values reinforce the appropriateness of these materials for use in magnetic refrigeration technology within TEC (10) values of 1 and 0.57 J∙kg−1∙K−1under 1 T applied magnetic field.
文摘Two-dimensional diagnosis of laser-induced zirconium(Zr)plasma has been experimentally performed using the time-of-flight method by employing Faraday cups in addition to electric and magnetic probes.The characteristic parameters of laser-induced Zr plasma have been evaluated as a function of different laser irradiances ranging from 4.5 to 11.7 GW cm-2 at different axial positions of 1–4 cm with a fixed radial distance of 2 cm.A well-supporting correlation between the plume parameters and the laser-plasma-produced spontaneous electric and magnetic(E and B)fields was established.The measurements of the characteristic parameters and spontaneously induced fields were observed to have an increasing trend with the increasing laser irradiance.However,when increasing the spatial distance in both the axial and radial directions,the plasma parameters(electron/ion number density,temperature and kinetic energy)did not show either continuously increasing or decreasing trends due to various kinetic and dynamic processes during the spatial evolution of the plume.However,the E and B fields were observed to be always diffusing away from the target.The radial component of electron number densities remained higher than the axial number density component,whereas the axial ion number density at all laser irradiances and axial distances remained higher than the radial ion number density.The higher axial self-generated electric field(SGEF)values than radial SGEF values are correlated with the effective charge-separation mechanism of electrons and ions.The generation of a self-generated magnetic field is observed dominantly in the radial direction at increasing laser irradiance as compared to the axial one due to the deflection of fast-moving electrons and the persistence of two-electron temperature on the radial axis.
文摘BACKGROUND Aortic coarctation is a potentially fatal condition that is primarily treated surgically.Despite successful procedures,patients frequently experience postoperative anxiety and depression,which can hinder recovery and worsen outcomes.Pharmacological interventions,such as 5-hydroxytryptamine(5-HT)and norepinephrine reuptake inhibitors,are commonly prescribed;however,their efficacy alone or in combination with non-invasive brain stimulation techniques,such as repetitive transcranial magnetic stimulation(TMS),remains unclear.AIM To assess the effect of medications and TMS on post-aortic surgery anxiety and depression.METHODS We analyzed the outcomes of 151 patients with anxiety and depression who were hospitalized for aortic dissection between January 2020 and September 2022.Using the random number table method,75 and 76 patients were allocated to the normal control and study groups,respectively.All the patients were treated using routine procedures.The control group was administered anti-anxiety and antidepression drugs,whereas the study group was treated with TMS in addition to these medications.The patients in both groups showed improvement after two courses of treatment.The Hamilton Anxiety Scale(HAMA)and the Hamilton Depression Scale(HAMD)were used to assess anxiety and depression,respectively.The serum levels of brain-derived neurotrophic factor(BDNF)and 5-HT were determined using enzyme-linked immunosorbent assay.The Pittsburgh Sleep Quality Index(PSQI)was used to estimate sleep quality,and the Repeatable Battery for the Assessment of Neuropsychological Status(RBANS)was used to assess cognitive function.RESULTS The HAMD and HAMA scores reduced in 2 groups,with the study group achieving a lower level than control(P<0.05).In the control group,43 patients recovered,17 showed improvement,and 15 were deemed invalid.In the study group,52 recovered,20 improved,and four were invalid.The efficacy rate in study group was 94.74%compared to 80.00%in control(P<0.05).The BDNF and 5-HT levels increased in both groups,with higher levels observed in the experimental group(P<0.05).Moreover,the PSQI scores decreased in 2 groups,but were lower in the intervention group than control(P<0.05).The scores of the RBANS items increased,with the study group scoring higher than control(P<0.05).CONCLUSION Combining anti-anxiety and anti-depressive drugs with repetitive TMS after aortic surgery may enhance mood and treatment outcomes,offering a promising clinical approach.
基金supported by Science and Technology Research Project for Education Department of Jiangxi Province, China (Grant No. GJJ218509)。
文摘We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagonal structure(space group: P63/cm) and exhibit a successive complicated magnetic phase transition. The extensive magnetic phase transitions contribute to the broad temperature range of MCEs exhibiting in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds, with maximum magnetic entropy change(-ΔSM_(max)) and refrigeration capacity of 10.2 J·kg^(-1)·K^(-1), 356.3 J/kg and 11.5 J·kg^(-1)·K^(-1),393.3 J/kg under varying magnetic fields 0–5 T, respectively. Remarkably, the δTFWHMvalues(the temperature range corresponding to 1/2×|-ΔSM_(max)|) of Er5Si3Bx(x=0.3,0.6) compounds were up to 41.8 K and 39.6 K, respectively. Thus, the present work provides a potential magnetic refrigeration material with a broad temperature range MCEs for applications in cryogenic magnetic refrigerators.
基金Project supported by the National Natural Science Foundation of China (Grant No.61774001)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,China (Grant No.KF202203)+1 种基金the NSF of Changsha City (Grant No.kq2208008)the NSF of Hunan Province (Grant No.2023JJ30116)。
文摘In the field of ultrafast magnetism,i.e.,subpicosecond or femtosecond time scales,the dynamics of magnetization can be described by the inertial Landau-Lifhitz-Gilbert equation.In terms of this equation,the intrinsic characteristics are investigated in detail for the theoretical limit of the magnetization reversal field.We can find that there is a critical value for the inertia parameterτ_(c),which is affected by the damping and anisotropy parameter of the system.When the inertial parameter factorτ<τ_(c),the limit value of the magnetization reversal field under the ultrafast magnetic mechanism is smaller than that of the fast magnetic mechanism.Whenτ>τ_(c),the limit value of the magnetization reversal field will be larger than the limit value under the fast magnetic mechanism.Moreover,it is important to point out that the limit value of the magnetization reversal field under the ultrafast magnetic mechanism decreases with the increasing inertial factor,asτ<τ_(c)/2,which increases with inertial factorτasτ>τ_(c)/2.Finally,with the joint action of damping and anisotropy,compared with fast magnetism,we find that the limit value of the magnetization reversal field has rich variation characteristics,i.e.,there is not only a linear and proportional relationship,but also an inverse relationship,which is very significant for the study of ultrafast magnetism.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFB1502502)the National Natural Science Foundation of China(Grant Nos.12141002 and 12225401)+6 种基金the Fund from Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratorysupported by the Interdisciplinary Program of Wuhan National High Magnetic Field Center(Grant No.WHMFC202123)Huazhong University of Science and Technologysupported by the National Natural Science Foundation of China(Grant Nos.12074041 and 11674030)the Foundation of the National Key Laboratory of Shock Wave and Detonation Physics(Grant No.6142A03191005)the National Key Research and Development Program of China(Grant No.2016YFA0302300)the startup funding of Beijing Normal University。
文摘We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo_(2)As_(2) and NdCo_(2)As_(2).LaCo_(2)As_(2) is a soft metallic ferromagnet which exhibits purely intrinsic anomalous Hall effect(AHE) due to Co-3d electrons. With Nd-4f electronic magnetism, ferrimagnetic NdCo_(2)As_(2) manifests pronounced sign reversal and multiple hysteresis loops in temperature-and field-dependent magnetization, Hall resistivity, and magnetoresistance, due to complicated magnetic structural changes. We reveal that the AHE for NdCo_(2)As_(2) is stemming from the Co sub-lattice and deduce its phase diagram which includes magnetic compensation and two meta-magnetic phase transitions. The sensitivity of the Hall effect on the details of the magnetic structures in ferrimagnetic NdCo_(2)As_(2) provides a unique opportunity to explore the magnetic interaction between 4f and 3d electrons and its impact on the electronic structure.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11704091)the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology(Grant No.NLK2021-10)the Open Project of Key Laboratory of Novel Materials for Sensor of Zhejiang Province,China(Grant No.ZJKLNMS2021010)。
文摘Materials with strongly coupled magnetic and electronic degrees of freedom provide new possibilities for practical applications.In this paper,we have investigated the structure,magnetic property,and magnetodielectric(MD) effect in Ho_(2)Cu_(2)O_(5) and Yb_(2)Cu_(2)O_(5) poly crystalline samples,which possess a non-centrosymmetric polar structure with space group Pna2_(1).In Ho_(2)Cu_(2)O_(5),Ho^(3+) and Cu^(2+) sublattices order simultaneously,exhibiting a typical paramagnetic to antiferromagnetic transition at 13.1 K.While for Yb_(2)Cu_(2)O_(5),two magnetic transitions which originate from the orderings of Yb^(3+)(7.8 K) and Cu^(2+)(13.5 K) sublattices are observed.A magnetic field induced metamagnetic transition is obtained in these two cuprates below Neel temperature(T_(N)).By means of dielectric measurement,distinct MD effect is demonstrated by the dielectric anomaly at T_(N.)Meanwhile,the MD effect is found to be directly related to the metamagnetic transition.Due to the specific spin configuration and different spin evolution in the magnetic field,a positive MD effect is formed in Ho_(2)Cu_(2)O_(5),and a negative one is observed in Yb_(2)Cu_(2)O_(5).The spontaneous dielectric anomaly at T_(N) is regarded as arising from the shifts in optical phonon frequencies,and the magnetoelectric coupling is used to interpret the magnetic field induced MD effect.Moreover,an H-T phase diagram is constructed for Ho_(2)Cu_(2)O_(5) and Yb_(2)Cu_(2)O_(5) based on the results of isothermal magnetic and dielectric hysteresis loops.