期刊文献+
共找到342篇文章
< 1 2 18 >
每页显示 20 50 100
A Bio-Inspired Flapping-Wing Robot With Cambered Wings and Its Application in Autonomous Airdrop 被引量:2
1
作者 Haifeng Huang Wei He +2 位作者 Qiang Fu Xiuyu He Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第12期2138-2150,共13页
Flapping-wing flight, as the distinctive flight method retained by natural flying creatures, contains profound aerodynamic principles and brings great inspirations and encouragements to drone developers. Though some i... Flapping-wing flight, as the distinctive flight method retained by natural flying creatures, contains profound aerodynamic principles and brings great inspirations and encouragements to drone developers. Though some ingenious flapping-wing robots have been designed during the past two decades, development and application of autonomous flapping-wing robots are less successful and still require further research. Here, we report the development of a servo-driven bird-like flapping-wing robot named USTBird-I and its application in autonomous airdrop.Inspired by birds, a camber structure and a dihedral angle adjustment mechanism are introduced into the airfoil design and motion control of the wings, respectively. Computational fluid dynamics simulations and actual flight tests show that this bionic design can significantly improve the gliding performance of the robot, which is beneficial to the execution of the airdrop mission.Finally, a vision-based airdrop experiment has been successfully implemented on USTBird-I, which is the first demonstration of a bird-like flapping-wing robot conducting an outdoor airdrop mission. 展开更多
关键词 Autonomous airdrop bionic design bio-inspired robot cambered wing flapping wing
下载PDF
Utilization of nonlinear vibrations of soft pipe conveying fluid for driving underwater bio-inspired robot
2
作者 Huliang DAI Yixiang HE +3 位作者 Kun ZHOU Zerui PENG Lin WANG P.HAGEDORN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2022年第7期1109-1124,共16页
Creatures with longer bodies in nature like snakes and eels moving in water commonly generate a large swaying of their bodies or tails,with the purpose of producing significant frictions and collisions between body an... Creatures with longer bodies in nature like snakes and eels moving in water commonly generate a large swaying of their bodies or tails,with the purpose of producing significant frictions and collisions between body and fluid to provide the power of consecutive forward force.This swaying can be idealized by considering oscillations of a soft beam immersed in water when waves of vibration travel down at a constant speed.The present study employs a kind of large deformations induced by nonlinear vibrations of a soft pipe conveying fluid to design an underwater bio-inspired snake robot that consists of a rigid head and a soft tail.When the head is fixed,experiments show that a second mode vibration of the tail in water occurs as the internal flow velocity is beyond a critical value.Then the corresponding theoretical model based on the absolute nodal coordinate formulation(ANCF)is established to describe nonlinear vibrations of the tail.As the head is free,the theoretical modeling is combined with the computational fluid dynamics(CFD)analysis to construct a fluid-structure interaction(FSI)simulation model.The swimming speed and swaying shape of the snake robot are obtained through the FSI simulation model.They are in good agreement with experimental results.Most importantly,it is demonstrated that the propulsion speed can be improved by 21%for the robot with vibrations of the tail compared with that without oscillations in the pure jet mode.This research provides a new thought to design driving devices by using nonlinear flow-induced vibrations. 展开更多
关键词 soft pipe conveying fluid underwater bio-inspired robot FLUTTER fluidstructure interaction(FSI) absolute nodal coordinate formulation(ANCF)
下载PDF
A Bio-Inspired Integration Model of Basal Ganglia and Cerebellum for Motion Learning of a Musculoskeletal Robot
3
作者 ZHANG Jinhan CHEN Jiahao +1 位作者 ZHONG Shanlin QIAO Hong 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第1期82-113,共32页
It is a significant research direction for highly complex musculoskeletal robots that how to develop the ability of motion learning and generalization.The cooperations of multiple brain regions are crucial to improvin... It is a significant research direction for highly complex musculoskeletal robots that how to develop the ability of motion learning and generalization.The cooperations of multiple brain regions are crucial to improving motion performance.Inspired by the neural mechanisms of structures,functions,and interconnections of basal ganglia and cerebellum,a biologically inspired integration model for motor learning of musculoskeletal robots is proposed.Based on the neural characteristics of the basal ganglia,the basal ganglia actor network,which mainly simulates the dorsal striatum,outputs motion commands,and the basal ganglia critic network,which simulates the ventral striatum,estimates actionstate values.Their network parameters are updated using the soft actor-critic method.Based on the sensorimotor prediction mechanism of the cerebellum,the cerebellum network evaluates the state feature extraction quality of the basal ganglia actor network and then updates the weights of its feature layer.This learning method is proven to converge to the optimal policy.Furthermore,drawing on the mechanism of dopaminergic dynamic regulation in the basal ganglia,the adaptive adjustment of target entropy and the dopaminergic experience replay are proposed to further improve the integration model,which contributes to the exploration-exploitation trade-off of motor learning.The bio-inspired integration model is validated on a musculoskeletal system.Experimental results indicate that this model can effectively control the musculoskeletal robot to accomplish the motion task from random starting locations to random target positions with high precision and robustness. 展开更多
关键词 Basal ganglia and cerebellum bio-inspired integration model motion learning musculoskeletal robot reinforcement learning.
原文传递
Gait Analysis of a Radial Symmetrical Hexapod Robot Based on Parallel Mechanisms 被引量:5
4
作者 XU Kun DING Xilun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期867-879,共13页
Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height.This paper investigates the performance of a radial symmetrical hexapod... Most gait studies of multi-legged robots in past neglected the dexterity of robot body and the relationship between stride length and body height.This paper investigates the performance of a radial symmetrical hexapod robot based on the dexterity of parallel mechanism.Assuming the constraints between the supporting feet and the ground with hinges,the supporting legs and the hexapod body are taken as a parallel mechanism,and each swing leg is regarded as a serial manipulator.The hexapod robot can be considered as a series of hybrid serial-parallel mechanisms while walking on the ground.Locomotion performance can be got by analyzing these equivalent mechanisms.The kinematics of the whole robotic system is established,and the influence of foothold position on the workspace of robot body is analyzed.A new method to calculate the stride length of multi-legged robots is proposed by analyzing the relationship between the workspaces of two adjacent equivalent parallel mechanisms in one gait cycle.Referring to service region and service sphere,weight service sphere and weight service region are put forward to evaluate the dexterity of robot body.The dexterity of single point in workspace and the dexterity distribution in vertical and horizontal projection plane are demonstrated.Simulation shows when the foothold offset goes up to 174 mm,the dexterity of robot body achieves its maximum value 0.164 4 in mixed gait.The proposed methods based on parallel mechanisms can be used to calculate the stride length and the dexterity of multi-legged robot,and provide new approach to determine the stride length,body height,footholds in gait planning of multi-legged robot. 展开更多
关键词 hexapod robot parallel mechanism KINEMATICS stride length DEXTERITY weight service sphere
下载PDF
Wheel-legged Hexapod Robots:a Multifunctional Mobile Manipulating Platform 被引量:9
5
作者 Ding Xilun Zheng Yi Xu Kun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期3-6,共4页
Robots are widely used to replace people in some burdensome or hamaful areas. Not only the moving ability but also the manipulating ability is needed in the missions of complex multitasking requirements. In the last d... Robots are widely used to replace people in some burdensome or hamaful areas. Not only the moving ability but also the manipulating ability is needed in the missions of complex multitasking requirements. In the last decades, wheel-legged hexapod robots are extensively studied to ineet this condition. 展开更多
关键词 SLAM Wheel-legged hexapod robots
下载PDF
Research on Biologically Inspired Hexapod Robot's Gait and Path Planning 被引量:1
6
作者 张辉 罗庆生 韩宝玲 《Journal of Beijing Institute of Technology》 EI CAS 2009年第4期443-447,共5页
Realistically there are many robot joints in the biologically inspired hexapod robot, so they will generate many complexities in the calculations of the gait and the path planning and the control variables. The softwa... Realistically there are many robot joints in the biologically inspired hexapod robot, so they will generate many complexities in the calculations of the gait and the path planning and the control variables. The software Solidworks and MSC. ADAMS are adopted to simulate and analyze the prototype model of the robot. By the simulations used in our design, the applicability of the tripod gait is validated, and the scheme which uses cubic spline curve as the endpoint of foot's path is feasible. The principles, methods, and processes of the simulation of hexapod robot are illustrated. A methodology is proposed to get the robot inverse solution in ADAMS, and to simplify the theoretical calculation, and further more to improve the efficiency of the design. 展开更多
关键词 biologically inspired hexapod robot gait planning kinematics simulation virtual prototype
下载PDF
Leg compliance control of a hexapod robot based on improved adaptive control in different environments 被引量:2
7
作者 朱雅光 金波 李伟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期904-913,共10页
Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance c... Considering the compliance control problem of a hexapod robot under different environments, a control strategy based on the improved adaptive control algorithm is proposed. The model of robot structure and impedance control is established. Then, the indirect adaptive control algorithm is derived. Through the analysis of its parameters, it can be noticed that the algorithm does not meet the requirements of the robot compliance control in a complex environment. Therefore, the fuzzy control algorithm is used to adjust the adaptive control parameters. The satisfied system response can be obtained based on the adjustment in real time according to the error between input and output. Comparative experiments and analysis of traditional adaptive control and the improved adaptive control algorithm are presented. It can be verified that not only desired contact force can be reached quickly in different environments, but also smaller contact impact and sliding avoidance are guaranteed, which means that the control strategy has great significance to enhance the adaptability of the hexapod robot. 展开更多
关键词 自适应控制算法 六足机器人 复杂环境 基础 模糊控制算法 控制策略 柔性控制 机器人结构
下载PDF
A gait planning method applied to hexapod biomimetic robot locomotion 被引量:1
8
作者 陈甫 《High Technology Letters》 EI CAS 2009年第1期7-12,共6页
In order to fulfill the goal of autonomous walking on rough terrain,a distributed gait planningmethod applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait co-ordination mecha... In order to fulfill the goal of autonomous walking on rough terrain,a distributed gait planningmethod applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait co-ordination mechanism of stick insect.The mathematical relation of walking velocity and gait pattern wasdepicted,a set of local rules operating between adjacent legs were put forward,and a distributed networkof local rules for gait control was constructed.With the interaction of adjacent legs,adaptive adjustmentof phase sequence fluctuation of walking legs resulting from change of terrain conditions or variety of walk-ing speed was implemented to generate statically stable gait.In the simulation experiments,adaptive ad-justment of inter-leg phase sequence and smooth transition of velocity and gait pattern were realized,andstatic stableness was ensured simultaneously,which provided the hexapod robot with the capability ofwalking on rough terrain stably and expeditiously. 展开更多
关键词 六足机器人 步态规划 仿生机器人 运动 应用 静态稳定性 分布式网络 行走速度
下载PDF
Biomimetic Experimental Research on Hexapod Robot's Locomotion Planning
9
作者 黄麟 韩宝玲 +2 位作者 罗庆生 张春林 徐嘉 《Journal of Beijing Institute of Technology》 EI CAS 2009年第1期27-31,共5页
To provide hexapod robots with strategies of locomotion planning, observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis. Through digitali... To provide hexapod robots with strategies of locomotion planning, observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis. Through digitalization of original analog video, locomotion characters of ants were obtained, the biomimetic foundation was laid for polynomial trajectory planning of multi-legged robots, which was deduced with mathematics method. In addition, five rules were concluded, which apply to hexapod robots marching locomotion planning. The first one is the fundamental strategy of multi-legged robots' leg trajectory planning. The second one helps to enhance the static and dynamic stability of multi-legged robots. The third one can improve the validity and feasibility of legs' falling points. The last two give criterions of multi-legged robots' toe trajectory figures and practical recommendatory constraints. These five rules give a good method for marching locomotion planning of multi-legged robots, and can be expended to turning planning and any other special locomotion. 展开更多
关键词 biomimetic experimental research hexapod robot locomotion planning trajectory planning polynomial curve fitting
下载PDF
Research on Miniature Hexapod Bio-robot
10
作者 宋一然 颜国正 徐小云 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第3期226-230,共5页
This paper described the structure and control of a new kind of miniature hexap od bio-robot, analyzed the moving principle of the robot. The robot is based on the principle of bionics, its structure is simple, design... This paper described the structure and control of a new kind of miniature hexap od bio-robot, analyzed the moving principle of the robot. The robot is based on the principle of bionics, its structure is simple, design novel, unique. It can mov e forwards and backwards. The external dimensions of bio-robot is: length 30 mm , width 40 mm, height 20 mm, weight 6.3 g. Some tests about the model robot were made. The experimental results show that the robot has good mobility. 展开更多
关键词 生物机器人 仿生学 稳定性 灵活性 尺寸
下载PDF
The HITCR-I:Evaluation on a free gait generation method for the hexapod robot on irregular terrain
11
作者 张赫 Zhao Jie +1 位作者 Liu Yubin Chen Fu 《High Technology Letters》 EI CAS 2013年第4期406-412,共7页
The purpose of this paper is to present and evaluate a method of free gait generation for HITCRI,a hexapod walking robot.The HITCR-I is designed as a modularized structure of legs that is based upon a four-bar linkage... The purpose of this paper is to present and evaluate a method of free gait generation for HITCRI,a hexapod walking robot.The HITCR-I is designed as a modularized structure of legs that is based upon a four-bar linkage mechanism and with force sensors in the tip of legs,distributed hardware structure and a modular software structure of the control system.Based on a set of local rules between adjacent legs,finite state machine(FSM) model is built to control the coordination of legs.An automatic smooth transition of gait pattern is achieved through deriving the mathematical relation between gait pattern and locomotion parameters.The disordered inter-leg phase sequence is adjusted to a regular state smoothly and quickly by the local rules based FSM,and the gait pattern can transform automatically adapting to irregular terrain.The experiment on HITCR-I has demonstrated that it can walk through irregular terrain reliably and expeditiously with the free gait controller designed in this paper. 展开更多
关键词 不规则地形 六足机器人 步态 生成方法 自由 评价 有限状态机 六足步行机器人
下载PDF
A control structure for the autonomous locomotion on rough terrain with a hexapod robot
12
作者 Chen Fu Zang Xizhe Yan Jihong Zhao Jie 《High Technology Letters》 EI CAS 2010年第3期311-317,共7页
关键词 六足机器人 复杂地形 控制结构 自主运动 步态规划 仿生机器人 地方性法规 分布式网络
下载PDF
金属矿山井下采场六足机器人运动分析及步态规划
13
作者 张旭飞 王运森 +3 位作者 孟祥凯 王瑜 周红 李元辉 《金属矿山》 CAS 北大核心 2024年第4期193-201,共9页
六足机器人因其结构特殊带来的良好越障能力成为仿生机器人研究的热点,然而,金属矿山井下采场矿石堆积、崎岖不平的特点,给这类机器人的行走稳定性、越障性带来更多的挑战。因此,为使六足机器人在井下具有更好的通过性,对其运动能力和... 六足机器人因其结构特殊带来的良好越障能力成为仿生机器人研究的热点,然而,金属矿山井下采场矿石堆积、崎岖不平的特点,给这类机器人的行走稳定性、越障性带来更多的挑战。因此,为使六足机器人在井下具有更好的通过性,对其运动能力和步态规划进行了相关研究。首先仿照自然界六足生物,设计六足机器人结构,对其腿部进行运动学分析;然后规划了用于采场的直行步态,结合采场路面环境设计了一种直线—摆线复合轨迹提升越障性,同时分析了机器人爬坡稳定性,对爬坡步态进行了优选;最后对规划步态进行仿真和现场模拟试验。仿真和试验结果表明,所规划的足端轨迹能跨越抬腿高度85%的障碍物,并且对矿石堆积形成的采场路面有更好的避障能力;三角步态爬坡时在坡底和坡顶过渡阶段容易打滑,而横向步态可以实现平滑的过渡,爬坡性能更佳。 展开更多
关键词 足式机器人 六足机器人 步态规划 采矿机器人 足端轨迹
下载PDF
基于DRL和自由步态的六足机器人运动规划研究
14
作者 王鑫鹏 傅汇乔 +3 位作者 邓归洲 唐开强 陈春林 留沧海 《系统仿真学报》 CAS CSCD 北大核心 2024年第2期373-384,共12页
为提高六足机器人在非结构环境下的通过率和运动性能,提出一种基于DRL和自由步态规划器的多接触运动规划算法。自由步态规划器获取目标状态下可达落足点从而输出最优步态序列;利用DRL训练得到六足机器人在随机生成的梅花桩环境中的质心... 为提高六足机器人在非结构环境下的通过率和运动性能,提出一种基于DRL和自由步态规划器的多接触运动规划算法。自由步态规划器获取目标状态下可达落足点从而输出最优步态序列;利用DRL训练得到六足机器人在随机生成的梅花桩环境中的质心运动策略。为了保证机器人在运动过程中相邻状态之间的可达性,利用状态转移可行性模型对状态转移可行性进行判定,实现六足机器人在不同宽度沟壑梅花桩环境下的落脚点规划。仿真与样机实验表明:多接触运动规划算法能够让机器人快速平稳地从起点到达目标区域,并自动调整步态模式以应对不同环境下随机分布的梅花桩。 展开更多
关键词 六足机器人 自由步态 深度强化学习 多接触运动规划 非结构环境
下载PDF
仿生六足机器人虚拟模型控制
15
作者 薛文超 胡立坤 《计算机与数字工程》 2024年第1期271-276,共6页
论文针对仿生六足机器人运动问题,提出了一种基于虚拟模型控制(Virtual Model Control,VMC)的简单直观的运动控制方法。在VMC框架中,一系列虚拟原件安装在机器人关节上,以产生相应的虚拟力。将机器人腿的运动模式分为站立相和摆动相两... 论文针对仿生六足机器人运动问题,提出了一种基于虚拟模型控制(Virtual Model Control,VMC)的简单直观的运动控制方法。在VMC框架中,一系列虚拟原件安装在机器人关节上,以产生相应的虚拟力。将机器人腿的运动模式分为站立相和摆动相两个阶段。站立相中,VMC被用于控制机器人躯干姿态,包括躯干高度和欧拉角;摆动相中,VMC为摆动腿提供控制,使其遵循期望的轨迹。通过状态机实现机器人腿状态切换和运动配合。仿真结果表明,设计的控制器可以实现六足机器人三角步态稳定行走。 展开更多
关键词 仿生六足机器人 虚拟模型控制 站立相 摆动相 三角步态
下载PDF
基于辅助变量的终端阻抗滑模六足机器人足端控制
16
作者 文俊 马瑞梓 《现代电子技术》 北大核心 2024年第11期93-98,共6页
针对复杂环境下六足机器人足端力/位跟踪控制问题,提出一种基于辅助变量的终端阻抗滑模六足机器人足端控制方法来实现复杂环境下六足机器人的稳定运动。首先,该方法引入广义阻抗模型实现复杂环境下六足机器人足端位置和力的动态调节;其... 针对复杂环境下六足机器人足端力/位跟踪控制问题,提出一种基于辅助变量的终端阻抗滑模六足机器人足端控制方法来实现复杂环境下六足机器人的稳定运动。首先,该方法引入广义阻抗模型实现复杂环境下六足机器人足端位置和力的动态调节;其次,引入终端滑模控制方法提高系统的鲁棒性以及足端力/位跟踪误差收敛性能;然后,设计动态补偿器以及新型的辅助变量,构建桥梁,从而建立了结合终端滑模控制以及广义阻抗控制的复合控制框架;之后,通过Lyapunov理论证明了控制器的稳定性;最后,在六足机器人三自由度机械腿模型上与滑膜阻抗控制方法(SMIC)进行了对比仿真验证,仿真结果证明了与结合线性滑模面的滑模阻抗控制方法相比,所提控制方法具有更好的足端力/位跟踪精度以及更快的跟踪误差收敛速度。 展开更多
关键词 六足机器人 力控制 位置控制 鲁棒性 不确定性 跟踪控制 柔顺性 阻抗控制
下载PDF
Graph-based robot optimal path planning with bio-inspired algorithms 被引量:1
17
作者 Tingjun Lei Timothy Sellers +2 位作者 Chaomin Luo Daniel W.Carruth Zhuming Bi 《Biomimetic Intelligence & Robotics》 EI 2023年第3期75-90,共16页
Recently,bio-inspired algorithms have been increasingly explored for autonomous robot path planning on grid-based maps.However,these approaches endure performance degradation as problem complexity increases,often resu... Recently,bio-inspired algorithms have been increasingly explored for autonomous robot path planning on grid-based maps.However,these approaches endure performance degradation as problem complexity increases,often resulting in lengthy search times to find an optimal solution.This limitation is particularly critical for real-world applications like autonomous off-road vehicles,where highquality path computation is essential for energy efficiency.To address these challenges,this paper proposes a new graph-based optimal path planning approach that leverages a sort of bio-inspired algorithm,improved seagull optimization algorithm(iSOA)for rapid path planning of autonomous robots.A modified Douglas–Peucker(mDP)algorithm is developed to approximate irregular obstacles as polygonal obstacles based on the environment image in rough terrains.The resulting mDPderived graph is then modeled using a Maklink graph theory.By applying the iSOA approach,the trajectory of an autonomous robot in the workspace is optimized.Additionally,a Bezier-curve-based smoothing approach is developed to generate safer and smoother trajectories while adhering to curvature constraints.The proposed model is validated through simulated experiments undertaken in various real-world settings,and its performance is compared with state-of-the-art algorithms.The experimental results demonstrate that the proposed model outperforms existing approaches in terms of time cost and path length. 展开更多
关键词 Autonomous robot Path planning bio-inspired algorithm Graph-based model Improved seagull optimization algorithm(iSOA)
原文传递
基于中枢模式发生器的机器人足端轨迹规划
18
作者 张峰 曹乐 +1 位作者 徐浩洋 张思河 《中国医学物理学杂志》 CSCD 2024年第1期72-80,共9页
提出一种仿生足端轨迹控制法,与传统方法相比,该方法用单个CPG神经元,将振荡器产生的轨迹直接作用于六足机器人足端,通过逆向求解各关节角度,节律摆动机器人各足实现横向行走。可调节CPG振荡器中的负载因子,周期,幅值等参数,实现六足机... 提出一种仿生足端轨迹控制法,与传统方法相比,该方法用单个CPG神经元,将振荡器产生的轨迹直接作用于六足机器人足端,通过逆向求解各关节角度,节律摆动机器人各足实现横向行走。可调节CPG振荡器中的负载因子,周期,幅值等参数,实现六足机器人足端轨迹中的步距,步幅以及在摆动相过程中的前摆轨迹和后摆轨迹调节。通过Matlab与Coppeliasim联合仿真,验证了改进后的模型应用在足端轨迹的可行性,与传统方法相比,参数调节灵活性高,并发处理效果好。 展开更多
关键词 六足机器人 中枢模式发生器 Hopf振荡器 足端轨迹 节律运动
下载PDF
一种多用途仿生六足机器人的设计与实现
19
作者 刘佩森 周博 唐维 《成都工业学院学报》 2024年第3期15-21,共7页
由于技术难度大、硬件成本高以及控制算法复杂等因素,六足机器人在小型服务机器人领域的应用受到限制。针对这一问题,采用平行多层结构设计、高扭矩舵机驱动和模块化硬件设计等方法,给出一种紧凑、易扩展和低成本的仿生六足机器人实例,... 由于技术难度大、硬件成本高以及控制算法复杂等因素,六足机器人在小型服务机器人领域的应用受到限制。针对这一问题,采用平行多层结构设计、高扭矩舵机驱动和模块化硬件设计等方法,给出一种紧凑、易扩展和低成本的仿生六足机器人实例,满足巡检、公众服务和实验教具等多用途需求。机械系统采用单足串联3自由度结构,椭圆布置的机体结构以及稳定的三角步态。通过单足简化模型,进行足端点受力分析,计算出需要的关节驱动扭矩,确定舵机选型。利用D-H参数法建立单足的运动学方程,计算出足端点坐标变换与关节转角的对应式。控制系统硬件单元采用7大模块,给出硬件的选型和电路设计。控制系统软件单元包括上位机和下位机程序,通过微控制器程序流程图详细阐述了六足机器人运动解算过程的实现。最后,根据软、硬件调试完成舵机补偿与功能测试,完成多用途仿生六足机器人的运动优化与开发。 展开更多
关键词 六足机器人 运动解算 三角步态 舵机补偿
下载PDF
A Review:From Aquatic Lives Locomotion to Bio-inspired Robot Mechanical Designations
20
作者 Pengxiao Bao Liwei Shi +2 位作者 Lijie Duan Shuxiang Guo Zhengyu Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2487-2511,共25页
With the development of camera technology,high-speed cameras have greatly contributed to capturing the movement and posture of animals,which has dramatically promoted experimental biology research.At the same time,wit... With the development of camera technology,high-speed cameras have greatly contributed to capturing the movement and posture of animals,which has dramatically promoted experimental biology research.At the same time,with the concept of bionics gradually gaining popularity among researchers,the design of robots is absorbing more and more biological features,where the interest in the bio-inspired robot is hewed out.Compared with the traditional robot,the bio-inspired robot imitates the motion pattern to achieve similar propulsion features,which may be more effective and reasonable.In this paper,the motion patterns of aquatic animals are divided into four categories according to their propulsion mechanisms:drag-based,lift-based,jet-based,and interface-based.And bio-inspired robots imitating aquatic prototypes are introduced and reviewed.Finally,the prospect of aquatic bio-inspired robots is discussed. 展开更多
关键词 BIONIC bio-inspired robot Aquatic animal Propelling mechanism Structure design
原文传递
上一页 1 2 18 下一页 到第
使用帮助 返回顶部