Biological water striders have advantages such as flexible movement,low disturbance to the water surface,and low noise.Researchers have developed a large number of biomimetic water strider robots based on their moveme...Biological water striders have advantages such as flexible movement,low disturbance to the water surface,and low noise.Researchers have developed a large number of biomimetic water strider robots based on their movement mechanism,which have broad application prospects in water quality testing,water surface reconnaissance,and search.This article mainly reviews the research progress of biomimetic water strider robots.First,the biological and kinematic characteristics of water striders are outlined,and some mechanical parameters of biological water striders are summarized.The basic equations of water strider movement are then described.Next,an overview is given of the past and current work on skating and jumping movements of biomimetic water strider robots based on surface tension and water pressure dominance.Based on the current research status of biomimetic water strider robots,the shortcomings of current research on biomimetic water striders are summarized,and the future development of biomimetic water strider robots is discussed.This article provides new insights for the design of biomimetic water strider robots.展开更多
Walking on the water surface is an effective method for miniature robots to transport payloads with dramatically decreased interfacial drag. Current aquatic robots reported are generally actuated by a beam of focused ...Walking on the water surface is an effective method for miniature robots to transport payloads with dramatically decreased interfacial drag. Current aquatic robots reported are generally actuated by a beam of focused light that can trigger asymmetrical deformation, enabling the directional movement through horizontal momentum transfer of photoinduced actuation force to the water. However, the operations are heavily dependent on manual manipulation of the focused light, making the long-term actuation and application of the aquatic robots in vast scenarios challenging. Herein, we developed a kind of water striderinspired robot that can autonomously manage the motion on the water surface under solar irradiation, with their direction steerable by a magnetic field. The motion of this bioinspired robot on the water surface was achieved by the use of a solar cell panel as a driving module to enable propulsive motion based on the conversion of light-electric-mechanical energies. The superhydrophobic design of its leg surfaces enables the aquatic robots with weight-bearing and drag-reducing abilities. With the assistance of magnetic navigation, the bioinspired robot can continuously and controllably locomote to the oily spill floating on the water body and collect them with high efficiency. For further demonstration, the treatment of oil spills in a campus pool with high efficiency has also been achieved. This on-site oil-spill treating strategy, taking advantage of a home-made bioinspired robot actuated by natural sunlight under magnetic steering, shows great potential applications in water-body remediation.展开更多
基金supported in part by the National Natural Science Foundation of China(No.11972170).
文摘Biological water striders have advantages such as flexible movement,low disturbance to the water surface,and low noise.Researchers have developed a large number of biomimetic water strider robots based on their movement mechanism,which have broad application prospects in water quality testing,water surface reconnaissance,and search.This article mainly reviews the research progress of biomimetic water strider robots.First,the biological and kinematic characteristics of water striders are outlined,and some mechanical parameters of biological water striders are summarized.The basic equations of water strider movement are then described.Next,an overview is given of the past and current work on skating and jumping movements of biomimetic water strider robots based on surface tension and water pressure dominance.Based on the current research status of biomimetic water strider robots,the shortcomings of current research on biomimetic water striders are summarized,and the future development of biomimetic water strider robots is discussed.This article provides new insights for the design of biomimetic water strider robots.
基金supported by the National Natural Science Foundation of China (Grant Nos. 22102104, 52175550)the Natural Science Foundation of Shenzhen Science and Technology Commission (Grant Nos. RCBS20200714114920190, JCYJ20220531103409021)+2 种基金Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515010672)the Specific Research Project of Guangxi for Research Bases and Talents (Grant No. 2022AC21200)the Opening Project of the Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University (Grant No. KF20211002)。
文摘Walking on the water surface is an effective method for miniature robots to transport payloads with dramatically decreased interfacial drag. Current aquatic robots reported are generally actuated by a beam of focused light that can trigger asymmetrical deformation, enabling the directional movement through horizontal momentum transfer of photoinduced actuation force to the water. However, the operations are heavily dependent on manual manipulation of the focused light, making the long-term actuation and application of the aquatic robots in vast scenarios challenging. Herein, we developed a kind of water striderinspired robot that can autonomously manage the motion on the water surface under solar irradiation, with their direction steerable by a magnetic field. The motion of this bioinspired robot on the water surface was achieved by the use of a solar cell panel as a driving module to enable propulsive motion based on the conversion of light-electric-mechanical energies. The superhydrophobic design of its leg surfaces enables the aquatic robots with weight-bearing and drag-reducing abilities. With the assistance of magnetic navigation, the bioinspired robot can continuously and controllably locomote to the oily spill floating on the water body and collect them with high efficiency. For further demonstration, the treatment of oil spills in a campus pool with high efficiency has also been achieved. This on-site oil-spill treating strategy, taking advantage of a home-made bioinspired robot actuated by natural sunlight under magnetic steering, shows great potential applications in water-body remediation.