In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road ...In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road maintenance.This paper introduces the modified emulsified asphalt materials commonly used in pavement maintenance projects,definitions and modified mechanisms of polymerized styrene butadiene rubber(SBR)modified emulsified asphalt,styrene butadiene styrene block polymer(SBS)modified emulsified asphalt and waterborne epoxy resin(WER)modified emulsified asphalt are summarized.The analysis focused on comparing the effects of modifiers,preparation process,auxiliary additives,and other factors on the performance of modified emulsified asphalt.In this paper,it is considered that the greatest impact on the performance of emulsified asphalt is the modifier,emulsifier mainly affects the speed of breaking the emulsion,stabilizers on the basic performance of emulsified asphalt evaporative residue is small;and when the modifier is distributed in the asphalt in a network,the dosage at this time is the recommended optimum dosage.Finally,this study recommends that in the future,the polymer-asphalt compatibility can be improved through composite modification,chemical grafting and other methods to continue to develop broader applicability and better performance of modified emulsified asphalt.展开更多
In order to study the application of gyratory compaction molding method in emulsified asphalt cold recycled mixture and optimize the relevant technical parameters, the study was carried out according to splitting stre...In order to study the application of gyratory compaction molding method in emulsified asphalt cold recycled mixture and optimize the relevant technical parameters, the study was carried out according to splitting strength, stability and water stability test;the design of the experiment involved changing gyration number, emulsified asphalt and water content, molded specimen temperature and other factors to analyze the volume parameters, mechanical properties and water stability. The results show that both the maximum dry density and dry and wet splitting strength ratio(DWSSR) of emulsified asphalt cold reclaimed mixture are improved by the rotary compacting method, while the porosity and the optimal dosage of water are reduced. Furthermore, with the increase of compaction times, the porosity and splitting strength index both change exponentially. DWSSR and porosity are consistent with quadratic functions. The use of gyratory compaction for 70 times at 25 °C and the optimum dosage of emulsified asphalt can be determined based on the splitting strength ratio. The high-temperature stability and water damage resistance of the pavement can be improved by the use of rotary compacting method effectively, and the early strength and road performance are higher than the regulatory requirements.展开更多
In this work,C@Fe_(3)O_(4) composites were prepared through a typical template method with emulsified asphalt as carbon source,ammonium ferric citrate as transition metal oxide precursor,and NaCl as template.As an ano...In this work,C@Fe_(3)O_(4) composites were prepared through a typical template method with emulsified asphalt as carbon source,ammonium ferric citrate as transition metal oxide precursor,and NaCl as template.As an anode for lithium-ion batteries,the optimized C@Fe_(3)O_(4)-1:2 composite exhibits an excellent reversible capacity of 856.6 mA·h·g^(-1)after 100 cycles at 0.1A·g^(-1)and a high capacity of 531.1mA·h·g^(-1)after 300 cycles at 1 A·g^(-1),much better than those of bulk carbon/Fe_(3)O_(4) prepared without NaCl.Such remarkable cycling performance mainly benefits from its well-designed structure:Fe_(3)O_(4) nanoparticles generated from ammonium ferric citrate during pyrolysis are homogenously encapsulated in graphitized and in-plane porous carbon nanocages derived from petroleum asphalt.The carbon nanocages not only improve the conductivity of Fe_(3)O_(4),but also suppress the volume expansion of FesO4 effectively during the charge discharge cycle,thus delivering a robust electrochemical stability.This work realizes the high value-added utilization of low-cost petroleum asphalt,and can be extended to application of other transition-metal oxides-based anodes.展开更多
The slurry scaling with cationic emulsified asphalt, which is a new technique in highway construction, is rapidly extended at home and abroad. The technique should apply an excellent slow set cationic cmulsincr. Now, ...The slurry scaling with cationic emulsified asphalt, which is a new technique in highway construction, is rapidly extended at home and abroad. The technique should apply an excellent slow set cationic cmulsincr. Now, slow set emulsificrs are ligninamines which are synthesized by trimethylamine-epichlorohydrin route. Owing to high price and unstable quality, the extending of slurry sealing technique is affected seriously. We prepare the ligninaminc by a novel synthetic method. By the novel method, the cost of production is reduced by more than 30%, and the products have stable quality, high emulsifying function and broad adaptability for various asphalts. The novel synthetic method uses soda lignin, secondary amines and inexpensive aminating assistants as raw materials. The technological process of the method may use either one or two-step process, and the technological condition arc uncomplicated and easy to master.展开更多
Bio-oil recycled asphalt binders in road engineering can help solve the problem of oil shortage and reduce the environmental pollution and sustainability.This paper investigated the road performance of the aged asphal...Bio-oil recycled asphalt binders in road engineering can help solve the problem of oil shortage and reduce the environmental pollution and sustainability.This paper investigated the road performance of the aged asphalt binder by adding bio-oil so that the aged asphalt binder could be reused to reach purpose of reuse.The residual soybean oil was selected as rejuvenator and blended with aged asphalt binder at 0%,2%,4%,and 6%,respectively.The results showed that bio-oil increased the penetration of aged asphalt binder,the penetration of bio-oil recycled asphalt binder with a bio-oil content of 6%reached the standard of 70#matrix asphalt binder.The addition of bio-oil reduced the viscosity,mixing and compaction temperature of aged asphalt binder.As a common knowledge,bio-oil helps to increase the lightweight components of the aged asphalt binder,which diminishes the high-temperature rutting resistance of bio-oil recycled asphalt binders.The high-temperature deformation resistance of bio-oil recycled asphalt binders had not decreased linearly with the bio-oil dosage.Meanwhile,the hightemperature performance of the bio-oil recycled asphalt binder with a 6%bio-oil was superior to matrix asphalt binder.Bio-oil increased the light components of the aged asphalt binder,thus reducing the high-temperature rheological properties of bio-oil recycled asphalt binders as the bio-oil dosage increases.The above test results showed that the bio-oil could restore the aged asphalt binder to the initial level to reach the reuse target.展开更多
基金The authors acknowledge the financial support from National Natural Science Foundation of China(No.51968006).
文摘In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road maintenance.This paper introduces the modified emulsified asphalt materials commonly used in pavement maintenance projects,definitions and modified mechanisms of polymerized styrene butadiene rubber(SBR)modified emulsified asphalt,styrene butadiene styrene block polymer(SBS)modified emulsified asphalt and waterborne epoxy resin(WER)modified emulsified asphalt are summarized.The analysis focused on comparing the effects of modifiers,preparation process,auxiliary additives,and other factors on the performance of modified emulsified asphalt.In this paper,it is considered that the greatest impact on the performance of emulsified asphalt is the modifier,emulsifier mainly affects the speed of breaking the emulsion,stabilizers on the basic performance of emulsified asphalt evaporative residue is small;and when the modifier is distributed in the asphalt in a network,the dosage at this time is the recommended optimum dosage.Finally,this study recommends that in the future,the polymer-asphalt compatibility can be improved through composite modification,chemical grafting and other methods to continue to develop broader applicability and better performance of modified emulsified asphalt.
基金Projects(51708048,51704040)supported by the National Natural Science Foundation of ChinaProject(17C0050)supported by the Scientific Research Project of Hunan Provincial Department of Education for General Scholars,China+1 种基金Project(kfj160103)supported by the Open Fund of State Engineering Laboratory of Highway Maintenance Technology(Changsha University of Science&Technology),ChinaProject supported by the Open Fund of Guangxi Key Lab of Road Structure and Materials,China
文摘In order to study the application of gyratory compaction molding method in emulsified asphalt cold recycled mixture and optimize the relevant technical parameters, the study was carried out according to splitting strength, stability and water stability test;the design of the experiment involved changing gyration number, emulsified asphalt and water content, molded specimen temperature and other factors to analyze the volume parameters, mechanical properties and water stability. The results show that both the maximum dry density and dry and wet splitting strength ratio(DWSSR) of emulsified asphalt cold reclaimed mixture are improved by the rotary compacting method, while the porosity and the optimal dosage of water are reduced. Furthermore, with the increase of compaction times, the porosity and splitting strength index both change exponentially. DWSSR and porosity are consistent with quadratic functions. The use of gyratory compaction for 70 times at 25 °C and the optimum dosage of emulsified asphalt can be determined based on the splitting strength ratio. The high-temperature stability and water damage resistance of the pavement can be improved by the use of rotary compacting method effectively, and the early strength and road performance are higher than the regulatory requirements.
基金supported by the National Natural Science Foundation of China(51402030)the Chongqing Special Key Project of Technological Innovation and Application Development(CSTB2022TIAD-KPX0031)+2 种基金the Team Building Project for Graduate Tutors in Chongqing(JDDSTD2022006)the Research and Innovation Program for Graduate Students in Chongqing(2023S0090)the National Innovation and Entrepreneurship Projects for College Students(202310618015).
文摘In this work,C@Fe_(3)O_(4) composites were prepared through a typical template method with emulsified asphalt as carbon source,ammonium ferric citrate as transition metal oxide precursor,and NaCl as template.As an anode for lithium-ion batteries,the optimized C@Fe_(3)O_(4)-1:2 composite exhibits an excellent reversible capacity of 856.6 mA·h·g^(-1)after 100 cycles at 0.1A·g^(-1)and a high capacity of 531.1mA·h·g^(-1)after 300 cycles at 1 A·g^(-1),much better than those of bulk carbon/Fe_(3)O_(4) prepared without NaCl.Such remarkable cycling performance mainly benefits from its well-designed structure:Fe_(3)O_(4) nanoparticles generated from ammonium ferric citrate during pyrolysis are homogenously encapsulated in graphitized and in-plane porous carbon nanocages derived from petroleum asphalt.The carbon nanocages not only improve the conductivity of Fe_(3)O_(4),but also suppress the volume expansion of FesO4 effectively during the charge discharge cycle,thus delivering a robust electrochemical stability.This work realizes the high value-added utilization of low-cost petroleum asphalt,and can be extended to application of other transition-metal oxides-based anodes.
文摘The slurry scaling with cationic emulsified asphalt, which is a new technique in highway construction, is rapidly extended at home and abroad. The technique should apply an excellent slow set cationic cmulsincr. Now, slow set emulsificrs are ligninamines which are synthesized by trimethylamine-epichlorohydrin route. Owing to high price and unstable quality, the extending of slurry sealing technique is affected seriously. We prepare the ligninaminc by a novel synthetic method. By the novel method, the cost of production is reduced by more than 30%, and the products have stable quality, high emulsifying function and broad adaptability for various asphalts. The novel synthetic method uses soda lignin, secondary amines and inexpensive aminating assistants as raw materials. The technological process of the method may use either one or two-step process, and the technological condition arc uncomplicated and easy to master.
文摘Bio-oil recycled asphalt binders in road engineering can help solve the problem of oil shortage and reduce the environmental pollution and sustainability.This paper investigated the road performance of the aged asphalt binder by adding bio-oil so that the aged asphalt binder could be reused to reach purpose of reuse.The residual soybean oil was selected as rejuvenator and blended with aged asphalt binder at 0%,2%,4%,and 6%,respectively.The results showed that bio-oil increased the penetration of aged asphalt binder,the penetration of bio-oil recycled asphalt binder with a bio-oil content of 6%reached the standard of 70#matrix asphalt binder.The addition of bio-oil reduced the viscosity,mixing and compaction temperature of aged asphalt binder.As a common knowledge,bio-oil helps to increase the lightweight components of the aged asphalt binder,which diminishes the high-temperature rutting resistance of bio-oil recycled asphalt binders.The high-temperature deformation resistance of bio-oil recycled asphalt binders had not decreased linearly with the bio-oil dosage.Meanwhile,the hightemperature performance of the bio-oil recycled asphalt binder with a 6%bio-oil was superior to matrix asphalt binder.Bio-oil increased the light components of the aged asphalt binder,thus reducing the high-temperature rheological properties of bio-oil recycled asphalt binders as the bio-oil dosage increases.The above test results showed that the bio-oil could restore the aged asphalt binder to the initial level to reach the reuse target.