期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Macroporous composite capacitive bioanode applied in microbial fuel cells 被引量:1
1
作者 Yuyang Wang Hongtao Zheng +2 位作者 Ye Chen Qing Wen Jiansong Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第1期205-209,共5页
Interfacial electron transfer between electroactive biofilm and the electrode was crucial step for microbial fuel cells(MFCs).A three-dimensional multilayer porous sponge coating with nitrogen-doped carbon nanotube/po... Interfacial electron transfer between electroactive biofilm and the electrode was crucial step for microbial fuel cells(MFCs).A three-dimensional multilayer porous sponge coating with nitrogen-doped carbon nanotube/polyaniline/manganese dioxide(S/N-CNT/PANI/MnO2)electrode has been developed for MFC anode.Here,the S/N-CNT/PANI/MnO2 anode can function as a biocapacitor,able to store electrons generated from the degradation of organic substrate under the open circuit state and release the accumulated electrons upon requirement.Thus,the mismatching of the production and demand of the electricity can be overcome.Comparing with the sponge/nitrogen-doped carbon nanotube(S/N-CNT)bioanode,S/N-CNT/PANI/MnO2 capacitive bioanode displays a strong interaction with the microbial biofilm,advancing the electron transfer from exoelectrogens to the bioanode.The maximum power density of MFC with S/N-CNT/PANI/MnO2 capacitive bioanode is 1019.5 mW/m^2,which is 2.2 and5.8 times as much as that of S/N-CNT/MnO2 bioanode and S/N-CNT bioanode(470.7 mW/m^2 and176.6 mW/m^2),respectively.During the chronoamperometric experiment with 60 min of charging and 20 min of discharging,the S/N-CNT/PANI/MnO2 capacitive bioanode was able to store 10743.9 C/m^2,whereas the S/N-CNT anode was only able to store 3323.4 C/m^2.With a capacitive bioanode,it is possible to use the MFC simultaneously for production and storage of electricity. 展开更多
关键词 Capacitive bioanode Three-dimensional hierarchical composite Microbial fuel cell Energy storage Porous sponge
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部