Biodiesel was used to prepare epoxidized fatty acid isobutyl esters(Ep-FABEs)as a biobased plasticizer in this work.Transesterification of biodiesel with isobutanol catalyzed by tetrabutyl titanate was carried out in ...Biodiesel was used to prepare epoxidized fatty acid isobutyl esters(Ep-FABEs)as a biobased plasticizer in this work.Transesterification of biodiesel with isobutanol catalyzed by tetrabutyl titanate was carried out in a gas-liquid tower reactor.The conversion achieved nearly 100%within 5 h under the reaction temperature,the mass ratio of catalyst to fatty acid methyl esters(FAMEs),and isobutanol to FAMEs total molar ratio of 180℃,0.4%(mass),and 5.4:1,respectively.In addition,kinetic model of the transesterification reaction was developed at 150–190℃.The calculated activation energy was 48.93 kJ·mol^(-1).Then,the epoxidation of obtained fatty acid isobutyl esters(FABEs)was conducted in the presence of formic acid and hydrogen peroxide.The Ep-FABEs was further analyzed for its plasticizing effectiveness to replace dioctyl phthalate(DOP)and compared with conventional epoxy plasticizer epoxidized fatty acid methyl esters(Ep-FAMEs).The results indicated that the thermal stability and mechanical properties of PVC films with Ep-FABEs plasticizer were significantly improved compared with those plasticized with DOP.In addition,the extraction resistance and migration stability of Ep-FABEs were better than those of EpFAMEs.Overall,the prepared Ep-FABEs via structural modification of biodiesel proved to be a promising biobased plasticizer.展开更多
Global plastics production is expected to exceed 400 million tons and reach 600 million tons by 2060.Their synthesis currently accounts for approximately 3%of global greenhouse gas emissions.Approximately 60%of all po...Global plastics production is expected to exceed 400 million tons and reach 600 million tons by 2060.Their synthesis currently accounts for approximately 3%of global greenhouse gas emissions.Approximately 60%of all polymers are produced for single-use.Examples include shopping bags,packaging materials,mulch films,and soluble polymers for cosmetics and other purposes.Currently,only a portion of single-use plastic is recycled or disposed of in incinerators or landfills.An estimated 20%is not disposed of properly and pollutes the global environment,especially the oceans.In response to these challenges,the United Nations,European Union,and many nation-states are developing regulatory frameworks that encourage the chemical industry to produce plastics with a smaller environmental footprint and often support this through research funding.Possible solutions include:(1)the use of green energy,green hydrogen,bio-based feedstocks,or CO_(2) in synthesis;(2)the reuse or recycling of plastics through conversion or pyrolysis;and(3)the production of biodegradable polymers.The German chemical industry contributes approximately one-third of polymer production in the EU.It is embedded in the EU regulatory and research landscape and anchored in the European Green Deal,which aims for carbon neutrality by 2050.In this paper,we describe how BASF and Evonik,two leading German chemical companies with strong but different polymer portfolios,respond to the call for greener polymers and how technologies are being developed to make polyurethanes,a particularly important and difficult-to-recycle family of elastomers and duromers,renewable and circular.Reducing the environmental footprint of plastics requires not only innovative materials but also proper governance,regulatory and collection systems,and public willingness to cooperate.In an international comparison of these competencies,expressed by the"polymer management index"(PMI),Germany achieved a top position.展开更多
In this study,the optical properties of transparent bioplastics have been investigated.The long-term technological goal is to establish biopolymers in a new market segment for demanding optical applications and to con...In this study,the optical properties of transparent bioplastics have been investigated.The long-term technological goal is to establish biopolymers in a new market segment for demanding optical applications and to contribute to a more sustainable economy.A collection of transparent bioplastics has been tested with respect to the long-term stability and the possibility of an application in optical components for LED lighting.The focus of materials testing was on the influence of short wavelength visible radiation as well as thermal loads.The results show,that some materials may be candidates for subsequent feasibility studies.To the best of our knowledge,the application of such polymers in complex technical products and in particular in luminaires has not yet been realized.The use of bio-based plastics for optical components therefore represents a novelty and has a high development potential.展开更多
基金Financial support provided by the National High-tech Research and Development Program of China(2014AA022103)。
文摘Biodiesel was used to prepare epoxidized fatty acid isobutyl esters(Ep-FABEs)as a biobased plasticizer in this work.Transesterification of biodiesel with isobutanol catalyzed by tetrabutyl titanate was carried out in a gas-liquid tower reactor.The conversion achieved nearly 100%within 5 h under the reaction temperature,the mass ratio of catalyst to fatty acid methyl esters(FAMEs),and isobutanol to FAMEs total molar ratio of 180℃,0.4%(mass),and 5.4:1,respectively.In addition,kinetic model of the transesterification reaction was developed at 150–190℃.The calculated activation energy was 48.93 kJ·mol^(-1).Then,the epoxidation of obtained fatty acid isobutyl esters(FABEs)was conducted in the presence of formic acid and hydrogen peroxide.The Ep-FABEs was further analyzed for its plasticizing effectiveness to replace dioctyl phthalate(DOP)and compared with conventional epoxy plasticizer epoxidized fatty acid methyl esters(Ep-FAMEs).The results indicated that the thermal stability and mechanical properties of PVC films with Ep-FABEs plasticizer were significantly improved compared with those plasticized with DOP.In addition,the extraction resistance and migration stability of Ep-FABEs were better than those of EpFAMEs.Overall,the prepared Ep-FABEs via structural modification of biodiesel proved to be a promising biobased plasticizer.
基金the German Federal Ministry of Education and Research(BMBF)for funding part of the work within the Kopernikus Initiative(‘Power-to-X’)under contract number P^(2)X-^(03)SFK2J0.
文摘Global plastics production is expected to exceed 400 million tons and reach 600 million tons by 2060.Their synthesis currently accounts for approximately 3%of global greenhouse gas emissions.Approximately 60%of all polymers are produced for single-use.Examples include shopping bags,packaging materials,mulch films,and soluble polymers for cosmetics and other purposes.Currently,only a portion of single-use plastic is recycled or disposed of in incinerators or landfills.An estimated 20%is not disposed of properly and pollutes the global environment,especially the oceans.In response to these challenges,the United Nations,European Union,and many nation-states are developing regulatory frameworks that encourage the chemical industry to produce plastics with a smaller environmental footprint and often support this through research funding.Possible solutions include:(1)the use of green energy,green hydrogen,bio-based feedstocks,or CO_(2) in synthesis;(2)the reuse or recycling of plastics through conversion or pyrolysis;and(3)the production of biodegradable polymers.The German chemical industry contributes approximately one-third of polymer production in the EU.It is embedded in the EU regulatory and research landscape and anchored in the European Green Deal,which aims for carbon neutrality by 2050.In this paper,we describe how BASF and Evonik,two leading German chemical companies with strong but different polymer portfolios,respond to the call for greener polymers and how technologies are being developed to make polyurethanes,a particularly important and difficult-to-recycle family of elastomers and duromers,renewable and circular.Reducing the environmental footprint of plastics requires not only innovative materials but also proper governance,regulatory and collection systems,and public willingness to cooperate.In an international comparison of these competencies,expressed by the"polymer management index"(PMI),Germany achieved a top position.
基金This research was part of the BMBF funded project NAROK(project grant 031B062)。
文摘In this study,the optical properties of transparent bioplastics have been investigated.The long-term technological goal is to establish biopolymers in a new market segment for demanding optical applications and to contribute to a more sustainable economy.A collection of transparent bioplastics has been tested with respect to the long-term stability and the possibility of an application in optical components for LED lighting.The focus of materials testing was on the influence of short wavelength visible radiation as well as thermal loads.The results show,that some materials may be candidates for subsequent feasibility studies.To the best of our knowledge,the application of such polymers in complex technical products and in particular in luminaires has not yet been realized.The use of bio-based plastics for optical components therefore represents a novelty and has a high development potential.