Ionic liquids have negligibly low vapor pressure, high stability and polarity. They are regarded as green solvents. Enzymes, especially lipases, as well as whole-cell of microbe, are catalytically active in ionic liqu...Ionic liquids have negligibly low vapor pressure, high stability and polarity. They are regarded as green solvents. Enzymes, especially lipases, as well as whole-cell of microbe, are catalytically active in ionic liquids or aqueous-ionic liquid biphasic systems. Up to date, there have been many reports on enzyme-exhibited features and enzyme-mediated reactions in ionic liquids. In many cases, remarkable results with respect to yield, catalytic activity, stability and (enantio-, regio-) selectivity were obtained in ionic liquids in comparison with those observed in conventional media. Accordingly, ionic liquids provide new possibilities for the application of new type of solvent in biocatalytic reactions.展开更多
Microbial transformation of diosgenin(1) was carried out with the white-rot fungus,Coriolus versicolor.A new polyhydroxyl metabolite,(25R)-spirost-5-ene-3β,7β,21-triol(2),was obtained as a result of hydroxylation.It...Microbial transformation of diosgenin(1) was carried out with the white-rot fungus,Coriolus versicolor.A new polyhydroxyl metabolite,(25R)-spirost-5-ene-3β,7β,21-triol(2),was obtained as a result of hydroxylation.Its structure was elucidated on the basis of 1D and 2D NMR as well as HR-ESI-MS spectroscopic analysis.展开更多
Photoenzymatic catalysis has become an emerging field in organic synthetic chemistry that provides eco-friendly alternatives to traditional methods. This comprehensive review examines the developing field of photoenzy...Photoenzymatic catalysis has become an emerging field in organic synthetic chemistry that provides eco-friendly alternatives to traditional methods. This comprehensive review examines the developing field of photoenzymatic catalysis, categorized by reaction types and focusing on its application in organic synthesis. This article highlights recent advances in the use of photoenzymatic reactions in carbon-carbon cross-coupling, ketone and alkene reduction, hydroamination, and hydrosulfonylation, mostly by flavin-dependent “ene”-reductases and nitroreductases. In each case, we exemplified the substrate scope that produces products with high yield and enantioselectivity. Additionally, the emerging trends in developing new enzymatic variants and novel reaction pathways that broaden the scope and enhance yield of these reactions were discussed.展开更多
基金the Natural Science Foundation of Guangdong Province (No. 020839).
文摘Ionic liquids have negligibly low vapor pressure, high stability and polarity. They are regarded as green solvents. Enzymes, especially lipases, as well as whole-cell of microbe, are catalytically active in ionic liquids or aqueous-ionic liquid biphasic systems. Up to date, there have been many reports on enzyme-exhibited features and enzyme-mediated reactions in ionic liquids. In many cases, remarkable results with respect to yield, catalytic activity, stability and (enantio-, regio-) selectivity were obtained in ionic liquids in comparison with those observed in conventional media. Accordingly, ionic liquids provide new possibilities for the application of new type of solvent in biocatalytic reactions.
基金supported by the National Natural Science Foundation of China(No.30770237)the Program for New Century Excellent Talents in University(No.NCET-05-0852)
文摘Microbial transformation of diosgenin(1) was carried out with the white-rot fungus,Coriolus versicolor.A new polyhydroxyl metabolite,(25R)-spirost-5-ene-3β,7β,21-triol(2),was obtained as a result of hydroxylation.Its structure was elucidated on the basis of 1D and 2D NMR as well as HR-ESI-MS spectroscopic analysis.
文摘Photoenzymatic catalysis has become an emerging field in organic synthetic chemistry that provides eco-friendly alternatives to traditional methods. This comprehensive review examines the developing field of photoenzymatic catalysis, categorized by reaction types and focusing on its application in organic synthesis. This article highlights recent advances in the use of photoenzymatic reactions in carbon-carbon cross-coupling, ketone and alkene reduction, hydroamination, and hydrosulfonylation, mostly by flavin-dependent “ene”-reductases and nitroreductases. In each case, we exemplified the substrate scope that produces products with high yield and enantioselectivity. Additionally, the emerging trends in developing new enzymatic variants and novel reaction pathways that broaden the scope and enhance yield of these reactions were discussed.