To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And e...To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And effect of Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicate that adding rare earth can refine grain. Different rare earth contents affect formation of HA and β-TCP in bioceramic coating. When the content of rare earth ranges from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA and β-TCP is the best, which indicates that “monosodium glutamate” effect of rare earth plays a dominant role. However, when rare earth content is up to 0.8%, the amount of synthesizing HA and β-TCP in coating conversely goes down, which demonstrates that rare earth gradually losts its catalysis in manufacturing HA and β-TCP.展开更多
Plasma electrolytic oxidation(PEO)has held great potential for the advancement of biodegradable implants,as it helps in developing porous bioceramic coatings on the surface of magnesium alloys.In this research work,Mg...Plasma electrolytic oxidation(PEO)has held great potential for the advancement of biodegradable implants,as it helps in developing porous bioceramic coatings on the surface of magnesium alloys.In this research work,MgO-based bioceramic coatings containing the Si,P,Ca,Na,and F elements have been successfully fabricated on an AZ31 magnesium alloy plate utilizing the PEO method.The characteristic current-voltage behavior of the samples during the process was surveyed in an electrolyte containing Ca(H_(2)PO_(4))_(2),Na_(2)SiO_(3)·9H_(2)O,Na_(3)PO_(4)·12H_(2)O,NaF,and KOH with a pH of 12.5 and electrical conductivity of 20 mS/cm^(-1).The results revealed that applying a voltage of 350-400 V(that is 50-100 V higher than the breakdown limit)could greatly facilitate the synthesis of a PEO ceramic coating with fewer defects and more uniform morphology.The resulting coating was a compositionally graded bioceramic layer with a thickness in the range of 3.5±0.4 to 6.0±0.7µm,comprising the above-mentioned elements as promising bioactive agents.The synthesized ceramic features were investigated in terms of the elemental distribution of components through the thickness,which indicated a gradual rise in the Si and P contents and,conversely,a decline in the F content towards the outer surface.The growth mechanism of the PEO coating has been discussed accordingly.展开更多
A layer of premixed CaHPO 4·2H 2O CaCO 3 Y 2O 3 powders stuck on pretreated surface of Ti 6Al 4V alloy substrate was successfully transformed into a composite of rare earth bioceramic coating by laser synthesizin...A layer of premixed CaHPO 4·2H 2O CaCO 3 Y 2O 3 powders stuck on pretreated surface of Ti 6Al 4V alloy substrate was successfully transformed into a composite of rare earth bioceramic coating by laser synthesizing and cladding only once. The microstructure and properties of the coating material were introduced. The titanium alloy with bioceramic coating on one side were implanted into the femur bone and thigh muscles of adult Mongrel dogs for testing its biocompatibility. The results of implantation experiments show that the microstructure of the coating material is static, the bonding properties between coating and substrate are better. The bioceramic coating had not toxicity side effectiveness on the body and there is a better compatibility of osteoconducton. No effect of the coating material on the bio activity of osteoblast and osteoclast was found.展开更多
The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding.The dynamics of gradient bioceramic composite coating containing hydroxyapatite(HA)prepared with mixture of ...The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding.The dynamics of gradient bioceramic composite coating containing hydroxyapatite(HA)prepared with mixture of CaHPO4·2H2O and CaCO3 under the condition of wide-band laser was studied theoretically.The corresponding mathematical model and its numerical solution were presented.The examination experiment showed that HA bioceramic composite coatings can be obtained by appropriately choosing wide-band laser cladding parameters.The microstructure and surface morphology of HA bioceramic coating were observed by SEM and X-ray diffraction.The experimental results showed that the bioceramic coating is composed of HA,β-TCP,CaO,CaTiO3 and TiO2.The surface of bioceramic coating takes coral-shaped structure or short-rod piled structure,which helps osteoblast grow into bioceramic and improves the biocompatibility.展开更多
The compound bioceramic coating containing calcium (Ca) and phosphorus (P) on titanium alloy substrate was prepared by means of micro-arc oxidation (MAO) treatment. The results show that under the different electrolyt...The compound bioceramic coating containing calcium (Ca) and phosphorus (P) on titanium alloy substrate was prepared by means of micro-arc oxidation (MAO) treatment. The results show that under the different electrolyte the coating with the color of gray or black and surface morphology of cauliflower or honeycomb, where Ca content and P contain can attain 30% and 20% respectively, can be obtained. Meanwhile, the influences of electrolyte temperature, current density and discharge time on morphology and thickness of coating are also discussed here.展开更多
Oxidation and hot corrosion behaviors of Ni3Al-Mo (IC6) alloy were studied. Surface protective coatings were also developed for the engineering application of the alloy. The sputtered NiCrAlY coating may greatly impro...Oxidation and hot corrosion behaviors of Ni3Al-Mo (IC6) alloy were studied. Surface protective coatings were also developed for the engineering application of the alloy. The sputtered NiCrAlY coating may greatly improve the oxidation and hot corrosion resistance of IC6 alloy by forming a protective Al2O3 scale, and the coating shows little effect on the mechanical properties of IC6 alloy.展开更多
This work is focused on developing zinc-doped hydroxyapatite-zeolite(Zn HA-Zeo)and polycaprolactone(PCL)composite coatings on magnesium(Mg)substrate to improve the corrosion resistance and antimicrobial properties.Dip...This work is focused on developing zinc-doped hydroxyapatite-zeolite(Zn HA-Zeo)and polycaprolactone(PCL)composite coatings on magnesium(Mg)substrate to improve the corrosion resistance and antimicrobial properties.Dip-coating technique was used to coat Zn HA-Zeo/PCL on the Mg substrate at room temperature.The samples were subjected to field emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Fourier transform infrared(FTIR),energy dispersive X-ray spectroscopy(EDX)and antimicrobial potential.Results demonstrated that composite coatings consist of HA,scholzite,zeolite,and PCL phases.EDX spectra indicated the presence of calcium(Ca),silicon(Si),aluminum(Al),zinc(Zn),phosphorus(P)and oxygen(O).The composite surface appeared in spherical-like microstructure on coating with thickness ranging 226-260μm.Zinc-doped HA-Zeo composite coating had a high corrosion resistance and provided sufficient protection to the Mg surface against galvanic corrosion.Doped Zn HA-Zeo coating samples exhibited superior disc inhibition by confirming antimicrobial activity against the E.coli as compared to HA-Zeo sample.Altogether these results showed that the Zn HA-Zeo coatings not only improved the corrosion resistance,but also enhanced the antimicrobial property and hence they can be used as suitable candidates for implant applications.展开更多
Niobium doped Zincoxide nanoparticles has been synthesized through electrochemical method and characterized by UV-Visible spectroscopy, IR Spectroscopy, SEM, XRD, ICPMS and EDAX data. The UV-Visible spectroscopy resul...Niobium doped Zincoxide nanoparticles has been synthesized through electrochemical method and characterized by UV-Visible spectroscopy, IR Spectroscopy, SEM, XRD, ICPMS and EDAX data. The UV-Visible spectroscopy result reveals that the band gap energy of ZnO/Nb2O5 nanoparticles to be 3.8 eV. The XRD results show that the crystallite size is to be 31.9 nm. The ICPMS data indicate the presence of 3,3461,328 counts of 93 Nb and 577,906,390 counts of 66 Zn. An improvement in the photocatalytic degradation of Indigocarmine dye (IC) in comparison to commercially available pure ZnO was observed. The photodegradation efficiency for ZnO/Nb2O5 and ZnO were found to be 97.4% and 52.1% respectively. The enhancement in photocatalytic activity of ZnO/ Nb2O5 was ascribed to the extended light absorption range and suppression of electron hole pair recombination upon Nb loading. The antibacterial activity of ZnO/Nb2O5 nanoparticles was investigated. These particles were shown to have an effective bactericide.展开更多
基金Project supported by Governor's Foundation of Guizhou Province (2004-07)
文摘To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And effect of Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicate that adding rare earth can refine grain. Different rare earth contents affect formation of HA and β-TCP in bioceramic coating. When the content of rare earth ranges from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA and β-TCP is the best, which indicates that “monosodium glutamate” effect of rare earth plays a dominant role. However, when rare earth content is up to 0.8%, the amount of synthesizing HA and β-TCP in coating conversely goes down, which demonstrates that rare earth gradually losts its catalysis in manufacturing HA and β-TCP.
文摘Plasma electrolytic oxidation(PEO)has held great potential for the advancement of biodegradable implants,as it helps in developing porous bioceramic coatings on the surface of magnesium alloys.In this research work,MgO-based bioceramic coatings containing the Si,P,Ca,Na,and F elements have been successfully fabricated on an AZ31 magnesium alloy plate utilizing the PEO method.The characteristic current-voltage behavior of the samples during the process was surveyed in an electrolyte containing Ca(H_(2)PO_(4))_(2),Na_(2)SiO_(3)·9H_(2)O,Na_(3)PO_(4)·12H_(2)O,NaF,and KOH with a pH of 12.5 and electrical conductivity of 20 mS/cm^(-1).The results revealed that applying a voltage of 350-400 V(that is 50-100 V higher than the breakdown limit)could greatly facilitate the synthesis of a PEO ceramic coating with fewer defects and more uniform morphology.The resulting coating was a compositionally graded bioceramic layer with a thickness in the range of 3.5±0.4 to 6.0±0.7µm,comprising the above-mentioned elements as promising bioactive agents.The synthesized ceramic features were investigated in terms of the elemental distribution of components through the thickness,which indicated a gradual rise in the Si and P contents and,conversely,a decline in the F content towards the outer surface.The growth mechanism of the PEO coating has been discussed accordingly.
文摘A layer of premixed CaHPO 4·2H 2O CaCO 3 Y 2O 3 powders stuck on pretreated surface of Ti 6Al 4V alloy substrate was successfully transformed into a composite of rare earth bioceramic coating by laser synthesizing and cladding only once. The microstructure and properties of the coating material were introduced. The titanium alloy with bioceramic coating on one side were implanted into the femur bone and thigh muscles of adult Mongrel dogs for testing its biocompatibility. The results of implantation experiments show that the microstructure of the coating material is static, the bonding properties between coating and substrate are better. The bioceramic coating had not toxicity side effectiveness on the body and there is a better compatibility of osteoconducton. No effect of the coating material on the bio activity of osteoblast and osteoclast was found.
基金Sponsored by Governor′s Foundation of Guizhou Province(2004-10)
文摘The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding.The dynamics of gradient bioceramic composite coating containing hydroxyapatite(HA)prepared with mixture of CaHPO4·2H2O and CaCO3 under the condition of wide-band laser was studied theoretically.The corresponding mathematical model and its numerical solution were presented.The examination experiment showed that HA bioceramic composite coatings can be obtained by appropriately choosing wide-band laser cladding parameters.The microstructure and surface morphology of HA bioceramic coating were observed by SEM and X-ray diffraction.The experimental results showed that the bioceramic coating is composed of HA,β-TCP,CaO,CaTiO3 and TiO2.The surface of bioceramic coating takes coral-shaped structure or short-rod piled structure,which helps osteoblast grow into bioceramic and improves the biocompatibility.
文摘The compound bioceramic coating containing calcium (Ca) and phosphorus (P) on titanium alloy substrate was prepared by means of micro-arc oxidation (MAO) treatment. The results show that under the different electrolyte the coating with the color of gray or black and surface morphology of cauliflower or honeycomb, where Ca content and P contain can attain 30% and 20% respectively, can be obtained. Meanwhile, the influences of electrolyte temperature, current density and discharge time on morphology and thickness of coating are also discussed here.
基金the High Technology Research and Development Programme of China
文摘Oxidation and hot corrosion behaviors of Ni3Al-Mo (IC6) alloy were studied. Surface protective coatings were also developed for the engineering application of the alloy. The sputtered NiCrAlY coating may greatly improve the oxidation and hot corrosion resistance of IC6 alloy by forming a protective Al2O3 scale, and the coating shows little effect on the mechanical properties of IC6 alloy.
基金supported by University of Engineering and Technology,Lahore,faculty under research project#ORIC/102-ASRB/1288 and UTM,FRGS grant#R.J130000.7845.4F768.
文摘This work is focused on developing zinc-doped hydroxyapatite-zeolite(Zn HA-Zeo)and polycaprolactone(PCL)composite coatings on magnesium(Mg)substrate to improve the corrosion resistance and antimicrobial properties.Dip-coating technique was used to coat Zn HA-Zeo/PCL on the Mg substrate at room temperature.The samples were subjected to field emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),Fourier transform infrared(FTIR),energy dispersive X-ray spectroscopy(EDX)and antimicrobial potential.Results demonstrated that composite coatings consist of HA,scholzite,zeolite,and PCL phases.EDX spectra indicated the presence of calcium(Ca),silicon(Si),aluminum(Al),zinc(Zn),phosphorus(P)and oxygen(O).The composite surface appeared in spherical-like microstructure on coating with thickness ranging 226-260μm.Zinc-doped HA-Zeo composite coating had a high corrosion resistance and provided sufficient protection to the Mg surface against galvanic corrosion.Doped Zn HA-Zeo coating samples exhibited superior disc inhibition by confirming antimicrobial activity against the E.coli as compared to HA-Zeo sample.Altogether these results showed that the Zn HA-Zeo coatings not only improved the corrosion resistance,but also enhanced the antimicrobial property and hence they can be used as suitable candidates for implant applications.
文摘Niobium doped Zincoxide nanoparticles has been synthesized through electrochemical method and characterized by UV-Visible spectroscopy, IR Spectroscopy, SEM, XRD, ICPMS and EDAX data. The UV-Visible spectroscopy result reveals that the band gap energy of ZnO/Nb2O5 nanoparticles to be 3.8 eV. The XRD results show that the crystallite size is to be 31.9 nm. The ICPMS data indicate the presence of 3,3461,328 counts of 93 Nb and 577,906,390 counts of 66 Zn. An improvement in the photocatalytic degradation of Indigocarmine dye (IC) in comparison to commercially available pure ZnO was observed. The photodegradation efficiency for ZnO/Nb2O5 and ZnO were found to be 97.4% and 52.1% respectively. The enhancement in photocatalytic activity of ZnO/ Nb2O5 was ascribed to the extended light absorption range and suppression of electron hole pair recombination upon Nb loading. The antibacterial activity of ZnO/Nb2O5 nanoparticles was investigated. These particles were shown to have an effective bactericide.