The intensification of estrogen non-point source pollution has drawn global attention due to their contribution to ecological environment problems worldwide,and it is critical to develop effective,economic and eco-fri...The intensification of estrogen non-point source pollution has drawn global attention due to their contribution to ecological environment problems worldwide,and it is critical to develop effective,economic and eco-friendly methods for reducing estrogens pollution.To address the agglomeration and oxidation of nano zero-valent iron(nZVI),biochar-nanoscale zero-valent iron composite(nZVI-biochar)could be a feasible choice for estrogens removal.This study summarized biochar and nZVI-biochar preparation,characterization,and unusual applications for estrone(E1),17β-estradiol(E2),and estriol(E3)removal.The properties of biochar and nZVI-biochar in characterization,effects of influencing factors on the removal efficiency,adsorption kinetics,isotherm and thermodynamics were investigated.The experiment results showed that nZVI-biochar exhibited the superior removal performance for estrogens pollutants compared to biochar.Based on the quasi-second-order model,estrogens adsorption kinetics were observed,which supported the mechanism that chemical and physical adsorption existed simultaneously on estrogens removal.The adsorption isotherm of estrogens could be well presented by the Freundlich model and thermodynamics studies explained that nZVI-biochar could spontaneously remove estrogens pollutants and the main mechanisms involvedπ-πinteraction,hydrophobic interaction,hydrogen bonding and degradation through ring rupture.The products analyzed by GC-MS showed that estrogens degradation was primarily attributed to the benzene ring broken,and Fe^(3+)promoted the production of free radicals,which further proved that nZVI-biochar had the excellent adsorption performances.Generally,nZVI-biochar could be employed as a potential material for removing estrogens from wastewater.展开更多
The addition of nano zero-valent iron(nZVI)is a promising technology for the in situ remediation of soil.Unfortunately,the mobility and,consequently,the reactivity of nZVI particles in contaminated areas decrease due ...The addition of nano zero-valent iron(nZVI)is a promising technology for the in situ remediation of soil.Unfortunately,the mobility and,consequently,the reactivity of nZVI particles in contaminated areas decrease due to their rapid aggregation.In this study,we determined how nZVI particles can be stabilized using different types of biochar(BC)as a support(BC@nZVI).In addition,we investigated the transport behavior of the synthesized BC@nZVI particles in a column filled with porous media and their effectiveness in the removal of BDE209(decabromodiphenyl ether)from soil.The characterization results of N2 Brunauer-Emmett-Teller(BET)surface area analyses,scanning electron microscopy(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FTIR)indicated that nZVI was successfully loaded into the BC.The sedimentation test results and the experimental breakthrough curves indicated that all of the BC@nZVI composites manifested better stability and mobility than did the bare-nZVI particles,and the transport capacity of the particles increased with increasing flow velocity and porous medium size.Furthermore,the maximum concentrations of the column effluent for bagasse-BC@nZVI(B-BC@nZVI)were 19%,37%and 48%higher than those for rice straw-BC@nZVI(R-BC@nZVI),wood chips-BC@nZVI(W-BC@nZVI)and corn stalks-BC@nZVI(C-BC@nZVI),respectively.A similar order was found for the removal and debromination efficiency of decabromodiphenyl ether(BDE209)by the aforementioned particles.Overall,the attachment of nZVI particles to BC significantly increased the reactivity,stability and mobility of B-BC@nZVI yielded,and nZVI the best performance.展开更多
基金Study on Colloidal Coagulation and Heavy Metal Adsorption Mechanism of Sediment River(No.42007158)Study on the distribution characteristics of birds and the reduction technology of typical pollutants in their habitats in the Yellow River basin(Henan section)(No.23B180008)supported this research.
文摘The intensification of estrogen non-point source pollution has drawn global attention due to their contribution to ecological environment problems worldwide,and it is critical to develop effective,economic and eco-friendly methods for reducing estrogens pollution.To address the agglomeration and oxidation of nano zero-valent iron(nZVI),biochar-nanoscale zero-valent iron composite(nZVI-biochar)could be a feasible choice for estrogens removal.This study summarized biochar and nZVI-biochar preparation,characterization,and unusual applications for estrone(E1),17β-estradiol(E2),and estriol(E3)removal.The properties of biochar and nZVI-biochar in characterization,effects of influencing factors on the removal efficiency,adsorption kinetics,isotherm and thermodynamics were investigated.The experiment results showed that nZVI-biochar exhibited the superior removal performance for estrogens pollutants compared to biochar.Based on the quasi-second-order model,estrogens adsorption kinetics were observed,which supported the mechanism that chemical and physical adsorption existed simultaneously on estrogens removal.The adsorption isotherm of estrogens could be well presented by the Freundlich model and thermodynamics studies explained that nZVI-biochar could spontaneously remove estrogens pollutants and the main mechanisms involvedπ-πinteraction,hydrophobic interaction,hydrogen bonding and degradation through ring rupture.The products analyzed by GC-MS showed that estrogens degradation was primarily attributed to the benzene ring broken,and Fe^(3+)promoted the production of free radicals,which further proved that nZVI-biochar had the excellent adsorption performances.Generally,nZVI-biochar could be employed as a potential material for removing estrogens from wastewater.
基金The National Key Research and Development Program of China(2018YFC1802802)the Guangdong Technology Research Center for Ecological Management and Remediation of Water Systems(2014B090904077).
文摘The addition of nano zero-valent iron(nZVI)is a promising technology for the in situ remediation of soil.Unfortunately,the mobility and,consequently,the reactivity of nZVI particles in contaminated areas decrease due to their rapid aggregation.In this study,we determined how nZVI particles can be stabilized using different types of biochar(BC)as a support(BC@nZVI).In addition,we investigated the transport behavior of the synthesized BC@nZVI particles in a column filled with porous media and their effectiveness in the removal of BDE209(decabromodiphenyl ether)from soil.The characterization results of N2 Brunauer-Emmett-Teller(BET)surface area analyses,scanning electron microscopy(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FTIR)indicated that nZVI was successfully loaded into the BC.The sedimentation test results and the experimental breakthrough curves indicated that all of the BC@nZVI composites manifested better stability and mobility than did the bare-nZVI particles,and the transport capacity of the particles increased with increasing flow velocity and porous medium size.Furthermore,the maximum concentrations of the column effluent for bagasse-BC@nZVI(B-BC@nZVI)were 19%,37%and 48%higher than those for rice straw-BC@nZVI(R-BC@nZVI),wood chips-BC@nZVI(W-BC@nZVI)and corn stalks-BC@nZVI(C-BC@nZVI),respectively.A similar order was found for the removal and debromination efficiency of decabromodiphenyl ether(BDE209)by the aforementioned particles.Overall,the attachment of nZVI particles to BC significantly increased the reactivity,stability and mobility of B-BC@nZVI yielded,and nZVI the best performance.