期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Enhanced removal of estrogens from simulated wastewater by biochar supported nanoscale zero-valent iron:performance and mechanism 被引量:1
1
作者 Yuping Han Huanhuan Xu +4 位作者 Guangzhou Wang Peiyuan Deng Lili Feng Yaoshen Fan Jiaxin Zhang 《Biochar》 SCIE CAS CSCD 2023年第1期1159-1173,共15页
The intensification of estrogen non-point source pollution has drawn global attention due to their contribution to ecological environment problems worldwide,and it is critical to develop effective,economic and eco-fri... The intensification of estrogen non-point source pollution has drawn global attention due to their contribution to ecological environment problems worldwide,and it is critical to develop effective,economic and eco-friendly methods for reducing estrogens pollution.To address the agglomeration and oxidation of nano zero-valent iron(nZVI),biochar-nanoscale zero-valent iron composite(nZVI-biochar)could be a feasible choice for estrogens removal.This study summarized biochar and nZVI-biochar preparation,characterization,and unusual applications for estrone(E1),17β-estradiol(E2),and estriol(E3)removal.The properties of biochar and nZVI-biochar in characterization,effects of influencing factors on the removal efficiency,adsorption kinetics,isotherm and thermodynamics were investigated.The experiment results showed that nZVI-biochar exhibited the superior removal performance for estrogens pollutants compared to biochar.Based on the quasi-second-order model,estrogens adsorption kinetics were observed,which supported the mechanism that chemical and physical adsorption existed simultaneously on estrogens removal.The adsorption isotherm of estrogens could be well presented by the Freundlich model and thermodynamics studies explained that nZVI-biochar could spontaneously remove estrogens pollutants and the main mechanisms involvedπ-πinteraction,hydrophobic interaction,hydrogen bonding and degradation through ring rupture.The products analyzed by GC-MS showed that estrogens degradation was primarily attributed to the benzene ring broken,and Fe^(3+)promoted the production of free radicals,which further proved that nZVI-biochar had the excellent adsorption performances.Generally,nZVI-biochar could be employed as a potential material for removing estrogens from wastewater. 展开更多
关键词 biochar supported nanoscale zero-valent iron ESTROGENS Free radicals ADSORPTION DEGRADATION
原文传递
Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene 被引量:9
2
作者 Gaoling Wei Jinhua Zhang +4 位作者 Jinqiu Luo Huajian Xue Deyin Huang Zhiyang Cheng Xinbai Jiang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2019年第4期167-177,共11页
The application of nanoscale zero-valent iron (nZVI) in the remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation and iron leaching. To address this issue, nZV... The application of nanoscale zero-valent iron (nZVI) in the remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation and iron leaching. To address this issue, nZVI was distributed on oak sawdust-derived biochar (BC) to obtain the nZVI/BC composite for the highly efficient reduction of nitrobenzene (NB). nZVI, BC and nZVI/BC were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). For nZVI/BC, nZVI particles were uniformly dispersed on BC. nZVI/BC exhibited higher removal efficiency for NB than the simple summation of bare nZVI and BC. The removal mechanism was investigated through the analyses of UV-Visible spectra, mass balance and XPS. NB was quickly adsorbed on the surface of nZVI/BC, and then gradually reduced to aniline (AN), accompanied by the oxidation of nZVI to magnetite. The effects of several reaction parameters, e.g., NB concentration, reaction pH and nZVI/BC aging time, on the removal of NB were also studied. In addition to high reactivity, the loading of nZVI on biochar significantly alleviated Fe leaching and enhanced the durability of nZVI. 展开更多
关键词 biochar nanoscale zero-valent iron NITROBENZENE Reduction Adsorption SYNERGISTIC effec
原文传递
Debromination of decabromodiphenyl ether by organo-montmorillonitesupported nanoscale zero-valent iron: Preparation, characterization and influence factors 被引量:13
3
作者 Zhihua Pang Mengyue Yan +2 位作者 Xiaoshan Jia Zhenxing Wang Jianyu Chen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期483-491,共9页
An organo-montmorillonite-supported nanoscale zero-valent iron material (M-NZVI) was synthesized to degrade decabromodiphenyl ether (BDE-209). The results showed that nanoscale zero-valent iron had good dispersion... An organo-montmorillonite-supported nanoscale zero-valent iron material (M-NZVI) was synthesized to degrade decabromodiphenyl ether (BDE-209). The results showed that nanoscale zero-valent iron had good dispersion on organo-montmoriUonite and was present as a core-shell structure with a particle size range of nanoscale iron between 30-90 nm, characterized by XRD, SEM, TEM, XRF, ICP-AES, and XPS. The results of the degradation of BDE-209 by M-NZVI showed that the efficiency of M-NZVI in removing BDE-209 was much higher than that of NZVI. The efficiency of M-NZVI in removing BDE-209 decreased as the pH and the initial dissolved oxygen content of the reaction solution increased, but increased as the proportion of water in the reaction solution increased. 展开更多
关键词 supported nanoscale zero-valent iron organo-montmorillonite decabromodiphenyl ether (BDE-209) degradation influence factors
原文传递
Sodium citrate and biochar synergistic improvement of nanoscale zero-valent iron composite for the removal of chromium(Ⅵ)in aqueous solutions 被引量:3
4
作者 Hongyi Zhou Mengyao Ye +3 位作者 Yongkang Zhao Shams Ali Baig Ning Huang Mengyan Ma 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第5期227-239,共13页
Sodium citrate(SC)is a widely-used food and industrial additive with the properties of com-plexation and microbial degradation.In the present study,nano-zero-valent iron reaction system(SC-nZVI@BC)was successfully est... Sodium citrate(SC)is a widely-used food and industrial additive with the properties of com-plexation and microbial degradation.In the present study,nano-zero-valent iron reaction system(SC-nZVI@BC)was successfully established by modifying nanoscale zero-valent iron(nZVI)with SC and biochar(BC),and was employed to remove Cr(Ⅵ)from aqueous solu-tions.The nZVI,SC-nZVI and SC-nZVI@BC were characterized and compared using X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR),thermogravimetric analy-ses(TGA),vibrating sample magnetometer(VSM),scanning electron microscope(SEM),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The results showed that nZVI was successfully loaded on the biochar,and both the agglomeration and surface pas-sivation problems of nanoparticles were well resolved.The dosage of SC,C∶Fe,initial pH and Cr(Ⅵ)concentration demonstrated direct effects on the removal efficiency.The maximum Cr(Ⅵ)removal rate and the removal capacity within 60 min were 99.7%and 199.46 mg/g,respectively(C∶Fe was 1∶1,SC dosage was 1.12 mol.%,temperature was 25℃,pH=7,and the original concentration of Cr(Ⅵ)was 20 mg/L).The reaction confirmed to follow the pseudo-second-order reaction kinetics,and the order of the reaction rate constant k was as follows:SC-nZVI@BC>nZVI@BC>SC-nZVI>nZVI.In addition,the mechanism of Cr(Ⅵ)removal by SC-nZVI@BC mainly involved adsorption,reduction and co-precipitation,and the reduction of Cr(Ⅵ)to Cr(Ⅲ)by nano Fe0 played a vital role.Findings from the present study demon-strated that the SC-nZVI@BC exhibited excellent removal efficiency toward Cr(Ⅵ)with an improved synergistic characteristic by SC and BC. 展开更多
关键词 nanoscale zero-valent iron Cr(Ⅵ)removal Sodium citrate biochar Synergistic promotion
原文传递
生物炭负载零价铁复合材料对土壤中石油污染物的去除作用 被引量:14
5
作者 徐文斐 任文海 +2 位作者 张秀霞 刘炳琨 陈杰 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2020年第5期1069-1077,共9页
为了解决土壤中石油污染物去除效率低、费用高等问题,采用液相还原的方法,将零价铁负载于由菌糠制备的生物炭上,得到铁/碳复合材料;通过FTIR、SEM和电化学工作站等手段表征铁/碳复合材料的形貌结构及性质;将铁/碳复合材料用于土壤中石... 为了解决土壤中石油污染物去除效率低、费用高等问题,采用液相还原的方法,将零价铁负载于由菌糠制备的生物炭上,得到铁/碳复合材料;通过FTIR、SEM和电化学工作站等手段表征铁/碳复合材料的形貌结构及性质;将铁/碳复合材料用于土壤中石油污染物的去除,利用GC-MS方法考察其去除污染物的性能。结果表明:零价铁负载于菌糠生物碳上能明显抑制团聚,提高反应活性;铁/碳复合材料对土壤中石油污染物的吸附符合准二级动力学模型;铁/碳复合材料对土壤石油污染物的去除,除吸附作用外还有对污染物还原降解作用。 展开更多
关键词 石油污染 土壤修复 纳米零价铁 铁/碳复合材料 还原降解
下载PDF
Preparation of porous semi-IPN temperature-sensitive hydrogel-supported nZVI and its application in the reduction of nitrophenol
6
作者 Lixia Li Ruiwei Wang +3 位作者 Xiaodong Xing Wenqiang Qu Shutong Chen Yunlong Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2019年第8期93-102,共10页
Nanoscale zero-valent iron(n ZVI) particles supported on a porous, semi-interpenetrating(semi-IPN), temperature-sensitive composite hydrogel(PNIPAm-PHEMA). n ZVI@PNIPAmPHEMA, was successfully synthesized and character... Nanoscale zero-valent iron(n ZVI) particles supported on a porous, semi-interpenetrating(semi-IPN), temperature-sensitive composite hydrogel(PNIPAm-PHEMA). n ZVI@PNIPAmPHEMA, was successfully synthesized and characterized by FT-IR, SEM, EDS, XRD and the weighing method. The loading of nZVI was 0.1548 ± 0.0015 g/g and the particle size was30–100 nm. NZVI was uniformly dispersed on the pore walls inside the PNIPAm-PHEMA.Because of the well-dispersed n ZVI, the highly porous structure, and the synergistic effect of PNIPAm-PHEMA, nZVI@PNIPAm-PHEMA showed excellent reductive activity and wide p H applicability. 95% of 4-NP in 100 m L of 400 mg/L 4-NP solution with initial p H 3.0–9.0 could be completely reduced into 4-AP by about 0.0548 g of fresh supported n ZVI at 18–25 °C under stirring(110 r/min) within 45 min reaction time. A greater than 99% 4-NP degradation ratio was obtained when the initial p H was 5.0–9.0. The reduction of 4-NP by nZVI@PNIPAm-PHEMA was in agreement with the pseudo-first-order kinetics model with Kobsvalues of 0.0885–0.101 min-1.NZVI@PNIPAm-PHEMA was able to be recycled, and about 85% degradation ratio of 4-NP was obtained after its sixth reuse cycle. According to the temperature sensitivity of PNIPAmPHEMA, n ZVI@PNIPAm-PHEMA exhibited very good storage stability, and about 88.9%degradation ratio of 4-NP was obtained after its storage for 30 days. The hybrid reducer was highly efficient for the reduction of 2-NP, 3-NP, 2-chloro-4-nitrophenol and 2-chloro-4-nitrophenol. Our results suggest that PNIPAm-PHEMA could be a good potential carrier, with n ZVI@PNIPAm-PHEMA having potential value in the application of reductive degradation of nitrophenol pollutants. 展开更多
关键词 POROUS SEMI-IPN temperature sensitive HYDROGEL supported nanoscale zero-valent iron Reductive degradation NITROPHENOL Storage stability
原文传递
人工湿地中典型基质和关键微生物的脱氮作用研究进展 被引量:1
7
作者 张燕 董红云 +6 位作者 李新华 刘宏元 王娜娜 王艳君 李英 贾曦 陈为京 《湿地科学》 CSCD 北大核心 2023年第5期770-775,共6页
人工湿地具有高效、低能耗、低投入、绿色和环境友好等优点,其被广泛应用在污水处理工艺中。人工湿地中的基质和微生物是人工湿地系统的重要组成部分,其在人工湿地脱氮过程中起着关键作用。从人工湿地处理污水的角度,概述了人工湿地中... 人工湿地具有高效、低能耗、低投入、绿色和环境友好等优点,其被广泛应用在污水处理工艺中。人工湿地中的基质和微生物是人工湿地系统的重要组成部分,其在人工湿地脱氮过程中起着关键作用。从人工湿地处理污水的角度,概述了人工湿地中生物炭、纳米零价铁、生物炭负载纳米零价铁等典型基质(填料)和氨氧化、反硝化、厌氧氨氧化、厌氧铁氨氧化微生物在脱氮中的作用研究进展,提出了未来相关研究的方向。 展开更多
关键词 生物炭 纳米零价铁 生物炭负载纳米零价铁 氨氧化 反硝化 厌氧铁氨氧化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部