Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw a...Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500℃) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73% and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537% more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.展开更多
I</span><span style="font-family:Verdana;">n recent years, biochar has received great attention among researcher</span><span style="font-family:Verdana;">s worldwide. This c...I</span><span style="font-family:Verdana;">n recent years, biochar has received great attention among researcher</span><span style="font-family:Verdana;">s worldwide. This carbon-rich material, mainly produced from residues from agriculture and forestry, holds a wide range of properties, e.g. large specific surface area, high cation exchange capacity, and substantial nutrient contents, that can have beneficial effects when added to soils. This review is giving a brief introduction to biochar properties and how feedstock, pyrolysis temperature, and time influence these properties. As the majority of studies concentrate</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">on the soil amending effects of biochar, this review also provides an overview of how biochar affects the chemical, physical, hydrological, and biological properties of soils. For example, biochar addition to soils can raise the pH, increase the organic carbon content, enhance nutrient retention, fost</span><span style="font-family:Verdana;">er porosity, augment the water-holding capacity, and increase microb</span><span style="font-family:Verdana;">ial biomass. Consequently, biochar can contribute to soil fertility, increase yields, help closing nutrient cycles, and thus help secure food safety in a region. Ho</span><span style="font-family:Verdana;">wever, the knowledge about the long-term effects is still limited and</span><span style="font-family:Verdana;"> should be broadened by</span></span><span style="font-family:Verdana;"> a </span><span style="font-family:Verdana;">more systematic testing of biochar effects in the future to help bring the benefits of biochar into practice.展开更多
基金supported by the National Natural Science Foundation of China (41171211)the Special Fund for Agro-Scientific Research in the Public Interest, China (201303095-2)
文摘Biochar is increasingly proposed as a soil amendment, with reports of benefits to soil physical, chemical and biological properties. In this study, different biochars were produced from 6 feedstocks, including straw and poultry manure, at 3 pyrolysis temperatures (200, 300 and 500℃) and then added separately to a calcareous soil. Their effects on soil properties and maize growth were evaluated in a pot experiment. The biochars derived from crop straw had much higher C but smaller N concentrations than those derived from poultry manure. Carbon concentrations, pH and EC values increased with increasing pyrolysis temperature. Biochar addition resulted in increases in mean maize dry matter of 12.73% and NPK concentrations of 30, 33 and 283%, respectively. Mean soil pH values were increased by 0.45 units. The biochar-amended soils had 44, 55, 254 and 537% more organic C, total N, Olsen-P and available K, respectively, than the control on average. Both feedstocks and pyrolysis temperature determined the characteristics of the biochar. Biochars with high mineral concentrations may act as mineral nutrient supplements.
文摘I</span><span style="font-family:Verdana;">n recent years, biochar has received great attention among researcher</span><span style="font-family:Verdana;">s worldwide. This carbon-rich material, mainly produced from residues from agriculture and forestry, holds a wide range of properties, e.g. large specific surface area, high cation exchange capacity, and substantial nutrient contents, that can have beneficial effects when added to soils. This review is giving a brief introduction to biochar properties and how feedstock, pyrolysis temperature, and time influence these properties. As the majority of studies concentrate</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">on the soil amending effects of biochar, this review also provides an overview of how biochar affects the chemical, physical, hydrological, and biological properties of soils. For example, biochar addition to soils can raise the pH, increase the organic carbon content, enhance nutrient retention, fost</span><span style="font-family:Verdana;">er porosity, augment the water-holding capacity, and increase microb</span><span style="font-family:Verdana;">ial biomass. Consequently, biochar can contribute to soil fertility, increase yields, help closing nutrient cycles, and thus help secure food safety in a region. Ho</span><span style="font-family:Verdana;">wever, the knowledge about the long-term effects is still limited and</span><span style="font-family:Verdana;"> should be broadened by</span></span><span style="font-family:Verdana;"> a </span><span style="font-family:Verdana;">more systematic testing of biochar effects in the future to help bring the benefits of biochar into practice.