期刊文献+
共找到3,979篇文章
< 1 2 199 >
每页显示 20 50 100
Discovering Cathodic Biocompatibility for Aqueous Zn–MnO_(2) Battery:An Integrating Biomass Carbon Strategy 被引量:1
1
作者 Wei Lv Zilei Shen +10 位作者 Xudong Li Jingwen Meng Weijie Yang Fang Ding Xing Ju Feng Ye Yiming Li Xuefeng Lyu Miaomiao Wang Yonglan Tian Chao Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期111-126,共16页
Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon... Developing high-performance aqueous Zn-ion batteries from sustainable biomass becomes increasingly vital for large-scale energy storage in the foreseeable future.Therefore,γ-MnO_(2) uniformly loaded on N-doped carbon derived from grapefruit peel is successfully fabricated in this work,and particularly the composite cathode with carbon carrier quality percentage of 20 wt%delivers the specific capacity of 391.2 mAh g^(−1)at 0.1 A g^(−1),outstanding cyclic stability of 92.17%after 3000 cycles at 5 A g^(−1),and remarkable energy density of 553.12 Wh kg^(−1) together with superior coulombic efficiency of~100%.Additionally,the cathodic biosafety is further explored specifically through in vitro cell toxicity experiments,which verifies its tremendous potential in the application of clinical medicine.Besides,Zinc ion energy storage mechanism of the cathode is mainly discussed from the aspects of Jahn–Teller effect and Mn domains distribution combined with theoretical analysis and experimental data.Thus,a novel perspective of the conversion from biomass waste to biocompatible Mn-based cathode is successfully developed. 展开更多
关键词 Aqueous Zn-ion batteries biocompatibility Jahn-Teller effect Mn domains γ-MnO_(2)
下载PDF
TWIP-assisted Zr alloys for medical applications:Design strategy,mechanical properties and first biocompatibility assessment
2
作者 Junhui Tang Hongtao Yang +4 位作者 Bingnan Qian Yufeng Zheng Philippe Vermaut Frédéric Prima Fan Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第17期32-42,共11页
This study proposes a novel strategy for the design of a new family of metastable Zr alloys.These al-loys offer improved mechanical properties for implants,particularly in applications where conventional stainless ste... This study proposes a novel strategy for the design of a new family of metastable Zr alloys.These al-loys offer improved mechanical properties for implants,particularly in applications where conventional stainless steels and Co-Cr alloys are currently used but lack suitability.The design approach is based on the controlled twinning-induced plasticity(TWIP)effect,significantly enhancing the ductility and strain-hardenability of the Zr alloys.In order to draw a“blueprint”for the compositional design of biomedical T WIP(Bio-T WIP)Zr alloys-using only non-toxic elements,the study combines D-electron phase stability calculations(specifically bond order(Bo)and mean d-orbital energy(Md))with a systematic experimental screening of active deformation mechanisms within the Zr-Nb-Sn alloy system.This research aids in ac-curately identifying the TWIP line,which signifies the mechanism shift between TWIP and classic slip as the primary deformation mechanism.To demonstrate the efficacy of the TWIP mechanism in enhancing mechanical properties,Zr-12Nb-2Sn,Zr-13Nb-1Sn,and Zr-14Nb-3Sn alloys are selected.Results indicate that the TWIP mechanism leads to a significant improvement of strain-hardening rate and a uniform elongation of∼20%in Zr-12Nb-2Sn,which displays both{332}<113>mechanical twinning and disloca-tion slip as the primary deformation mechanisms.Conversely,Zr-14Nb-3Sn exhibits the typical mechan-ical properties found in stable body-centered cubic(BCC)alloys,characterized by the sole occurrence of dislocation slip.Cell viability tests confirm the superior biocompatibility of Zr-Nb-based alloys with deformation twins on the surface,in line with existing literature.Based on the whole set of results,a comprehensive design diagram is proposed. 展开更多
关键词 Zr alloys STRAIN-HARDENING Twinning-induced plasticity(TWIP) Bo-Md diagram biocompatibility Biomedical materials
原文传递
Degradation and biocompatibility of one-step electrodeposited magnesium thioctic acid/magnesium hydroxide hybrid coatings on ZE21B alloys for cardiovascular stents
3
作者 Zhao-Qi Zhang Bing-Zhi Li +5 位作者 Pei-Duo Tong Shao-Kang Guan Li Wang Zheng-Hui Qiu Cun-Guo Lin Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期120-138,共19页
Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing comp... Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing composite coatings are usually complicated and time-consuming.Herein,a novel composite coating,composed of bioactive magnesium thioctic acid(MTA)layer formed by deposition and corrosion-resistant magnesium hydroxide(Mg(OH)_(2))layer grown in situ,is simply fabricated on ZE21B alloys via one-step electrodeposition.Scanning electron microscopy(SEM)shows that the electrodeposited coating has a compact and uniform structure.And the high adhesion of the MTA/Mg(OH)_(2)hybrid coating is also confirmed by the micro-scratch test.Electrochemical test,scanning kelvin probe(SKP),and hydrogen evolution measurement indicate that the hybrid coating effectively reduces the degradation rate of Mg substrates.Haemocompatibility experiment and cell culture trial detect that the composite coating is of fine biocompatibility.Finally,the preparation mechanism of MTA/Mg(OH)_(2)hybrid coatings is discussed and proposed.This coating shows a great potential application for cardiovascular stents. 展开更多
关键词 Magnesium alloy Corrosion resistance Hybrid coating ENDOTHELIALIZATION biocompatibility
下载PDF
The influence of yttrium and manganese additions on the degradation and biocompatibility of magnesium-zinc-based alloys:In vitro and in vivo studies
4
作者 Lei Shi Yang Yan +3 位作者 Chun-sheng Shao Kun Yu Bo Zhang Liang-jian Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期608-624,共17页
The repair and regeneration of bone defects are highly challenging orthopedic problems.Recently,Mg-based implants have gained popularity due to their unique biodegradation and elastic modulus similar to that of human ... The repair and regeneration of bone defects are highly challenging orthopedic problems.Recently,Mg-based implants have gained popularity due to their unique biodegradation and elastic modulus similar to that of human bone.The aim of our study is to develop a magnesium alloy with a controllable degradation that can closely match bone tissue to help injuries heal in vivo and avoid cytotoxicity caused by a sudden increase in ion concentration.In this study,we prepared and modified Mg-3Zn,Mg-3Zn-1Y,and Mg-2Zn-1Mn by hot extrusion,and used Mg-2.5Y-2.5Nd was as a control.We then investigated the effect of additions of Y and Mn on alloys'properties.Our results show that Mn and Y can improve not only compression strength but also corrosion resistance.The alloy Mg-2Zn-1Mn demonstrated good cytocompatibility in vitro,and for this reason we selected it for implantation in vivo.The degraded Mg-2Zn-1Mn implanted a bone defect area did not cause obvious rejection and inflammatory reaction,and the degradation products left no signs of damage to the heart,liver,kidney,or brain.Furthermore,we find that Mg-2Zn-1Mn can promote an osteoinductive response in vivo and the formation of bone regeneration. 展开更多
关键词 Magnesium alloy BIODEGRADATION biocompatibility Bone regeneration Bone defect repair
下载PDF
Enhancing the anti-corrosion performance and biocompatibility of AZ91D Mg alloy by applying roughness pretreatment and coating with in-situ Mg(OH)_(2)/Mg-Al LDH
5
作者 Zexi Shao Pubo Li +3 位作者 Chao Zhang Bintao Wu Chan Tang Mangmang Gao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2520-2533,共14页
Corrosion-resistant and biocompatible films were fabricated on AZ91D Mg alloy substrates by varying their roughness levels using met-allographic preparation and subsequent hydrothermal procedures.The coated films comp... Corrosion-resistant and biocompatible films were fabricated on AZ91D Mg alloy substrates by varying their roughness levels using met-allographic preparation and subsequent hydrothermal procedures.The coated films comprised a mixed structure of Mg(OH)_(2)and Mg-Al layered double hydroxides(LDH)and exhibited excellent compactness.Coating film thickness increased with decreasing surface roughness.Corrosion resistance was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy.Metallographic pretreat-ment influenced the chemical activity of the Mg alloy surface and helped modulate the dissolution rate of the Mg_(17)Al_(12)phase during the hydrothermal procedure.With decreasing roughness of the Mg substrate,the Al^(3+)concentration gradually increased,accelerating the in-situ formation of the Mg(OH)_(2)/LDH composite coating and improving its crystallinity.A thick and dense Mg(OH)_(2)/LDH coating was synthesized on the Mg substrate with the least roughness,substantially improving the corrosion resistance of the AZ91D alloy.The lowest corrosion current density((5.73±2.75)×10^(−8)A·cm^(−2))was achieved,which was approximately three orders of magnitude less than that of bare AZ91D.Moreover,the coating demonstrated biocompatibility with no evident cytotoxicity,cellular damage,and hemolytic phenomena.This study provides an effective method for preparing coatings on Mg alloy surfaces with excellent corrosion resistance and biocompatibility. 展开更多
关键词 Magnesium alloy ROUGHNESS Corrosion resistance Layered double hydroxides biocompatibility
下载PDF
In vitro corrosion and biocompatibility of phosphating modified WE43 magnesium alloy 被引量:5
6
作者 叶成红 奚廷斐 +2 位作者 郑玉峰 王淑琴 李扬德 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期996-1001,共6页
Phospahting coated WE43 magnesium alloy was prepared by an immersion method. The microstructure, corrosion resistance and biocompatibility of the coated alloy were investigated. Scanning electron microscopy (SEM) an... Phospahting coated WE43 magnesium alloy was prepared by an immersion method. The microstructure, corrosion resistance and biocompatibility of the coated alloy were investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to examine the microstructure and the composition of the coated alloy. The corrosion resistance was studied by means of potentiodynamic polarization method and the biocompatibility of the surface modified WE43 alloy was evaluated by (3-(4,5)-Dimethylthiazol-2, yl)-2,5-diphenyltetrazolium bromide (MTT) and hemolysis test. The results show that the phosphating coating can enhance the corrosion resistance of WE43 alloy and can be a good candidate to increase the biocompatibility of WE43 alloy. 展开更多
关键词 magnesium alloy phosphating coating corrosion resistance biocompatibility
下载PDF
Effects of chitosan coating on biocompatibility of Mg-6%Zn-10%Ca_3(PO_4)_2 implant 被引量:1
7
作者 赵俊 陈良建 +5 位作者 余琨 陈畅 戴翌龙 乔雪岩 颜阳 余志明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期824-831,共8页
A Mg?6%Zn?10%Ca3(PO4)2 composite with a chitosan coating was prepared to study its in vivo biodegradation properties. The chitosan dissolved in a 0.2% acetic acid solution was applied on the surface of Mg?6%Zn?10%Ca3(... A Mg?6%Zn?10%Ca3(PO4)2 composite with a chitosan coating was prepared to study its in vivo biodegradation properties. The chitosan dissolved in a 0.2% acetic acid solution was applied on the surface of Mg?6%Zn?10%Ca3(PO4)2 composite specimens and solidified at 60 °C for 30 min to form the coating. The cytotoxicity evaluation of chitosan coated specimens is at level 0, which indicates that such coating is safe for cellular applications. The in vivotests of chitosan coated composite show that the concentration of metal ions from the composite measured in the venous blood of Zelanian rabbits is less than that from the uncoated composite specimens. The chitosan coating impedes the in vivo degradation of the composite after surgery. The in vivo testing also indicates that the chitosan coated composite is harmless to important visceral organs, including the heart, kidneys and liver of the rabbits. The new bone formation surrounding the chitosan coated composite implant shows that the composite improves the concrescence of the bone tissues. And the chitosan coating is an effective corrosion resistant layer that reduces the hydrogen release of the implant composite, thereby decreasing the subcutaneous gas bubbles formed. 展开更多
关键词 biocompatibility magnesium composite CHITOSAN CYTOTOXICITY
下载PDF
Nanoparticles for the treatment of spinal cord injury
8
作者 Qiwei Yang Di Lu +8 位作者 Jiuping Wu Fuming Liang Huayi Wang Junjie Yang Ganggang Zhang Chen Wang Yanlian Yang Ling Zhu Xinzhi Sun 《Neural Regeneration Research》 SCIE CAS 2025年第6期1665-1680,共16页
Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a s... Spinal cord injuries lead to significant loss of motor, sensory, and autonomic functions, presenting major challenges in neural regeneration. Achieving effective therapeutic concentrations at injury sites has been a slow process, partly due to the difficulty of delivering drugs effectively. Nanoparticles, with their targeted delivery capabilities, biocompatibility, and enhanced bioavailability over conventional drugs, are garnering attention for spinal cord injury treatment. This review explores the current mechanisms and shortcomings of existing treatments, highlighting the benefits and progress of nanoparticle-based approaches. We detail nanoparticle delivery methods for spinal cord injury, including local and intravenous injections, oral delivery, and biomaterial-assisted implantation, alongside strategies such as drug loading and surface modification. The discussion extends to how nanoparticles aid in reducing oxidative stress, dampening inflammation, fostering neural regeneration, and promoting angiogenesis. We summarize the use of various types of nanoparticles for treating spinal cord injuries, including metallic, polymeric, protein-based, inorganic non-metallic, and lipid nanoparticles. We also discuss the challenges faced, such as biosafety, effectiveness in humans, precise dosage control, standardization of production and characterization, immune responses, and targeted delivery in vivo. Additionally, we explore future directions, such as improving biosafety, standardizing manufacturing and characterization processes, and advancing human trials. Nanoparticles have shown considerable progress in targeted delivery and enhancing treatment efficacy for spinal cord injuries, presenting significant potential for clinical use and drug development. 展开更多
关键词 ANTIOXIDANTS axon regeneration biocompatible materials drug carriers NANOPARTICLES nerve regeneration neuroinflammatory diseases NEUROPROTECTION spinal cord injury stem cells
下载PDF
静电纺丝聚偏氟乙烯压电仿生骨膜的生物相容性评价
9
作者 赵帅 李冬瑶 +3 位作者 魏岁艳 曹怡静 许燕 徐国强 《中国组织工程研究》 CAS 北大核心 2025年第4期730-737,共8页
背景:课题组前期研究发现,静电纺丝聚偏氟乙烯仿生骨膜具有良好的细胞相容性,但其生物相容性尚不清楚。目的:评价掺Zn2+、Mg2+聚偏氟乙烯仿生骨膜的生物相容性。方法:取前期研究采用静电纺丝技术制备的聚偏氟乙烯、掺1%Zn2+聚偏氟乙烯、... 背景:课题组前期研究发现,静电纺丝聚偏氟乙烯仿生骨膜具有良好的细胞相容性,但其生物相容性尚不清楚。目的:评价掺Zn2+、Mg2+聚偏氟乙烯仿生骨膜的生物相容性。方法:取前期研究采用静电纺丝技术制备的聚偏氟乙烯、掺1%Zn2+聚偏氟乙烯、掺1%Mg2+聚偏氟乙烯、掺1%Zn2++1%Mg2+聚偏氟乙烯仿生骨膜,制备各组仿生骨膜浸提液,选择SD大鼠为实验对象,进行溶血实验、短期全身毒性实验、热源实验,选择豚鼠为实验对象,进行皮肤致敏实验,检测4组仿生骨膜的生物相容性。结果与结论:①溶血实验结果显示,掺1%Zn2+聚偏氟乙烯、掺1%Mg2+聚偏氟乙烯、掺1%Zn2++1%Mg2+聚偏氟乙烯仿生骨膜及聚偏氟乙烯浸提液的溶血率分别为(0.130±0.013)%,(0.149±0.020)%,(0.466±0.018)%,(0.037±0.018)%,符合生物材料血液相容性性标准;②短期全身毒性实验结果显示,4组仿生骨膜浸提液灌胃干预后未引起SD大鼠体质量减轻、摄食量变化及呼吸困难等毒性体征,对大鼠的主要脏器无毒性作用;③热源实验结果显示,掺1%Zn2+聚偏氟乙烯、掺1%Mg2+聚偏氟乙烯、掺1%Zn2++1%Mg2+聚偏氟乙烯及聚偏氟乙烯仿生骨膜浸提液干预后,SD大鼠体温升高值分别为(0.133±0.058),(0.100±0.010),(0.300±0.010),(0.300±0.017)℃,均小于0.6℃,体温升高度数总和均小于1.4℃;④皮肤致敏实验结果显示,4组仿生骨膜浸提液干预后豚鼠皮下未见红斑与水肿。结果表明:聚偏氟乙烯与掺Zn2+、Mg2+聚偏氟乙烯仿生骨膜具有良好的生物相容性。 展开更多
关键词 静电纺丝 聚偏氟乙烯 仿生骨膜 锌离子 镁离子 生物相容性
下载PDF
Fabrication of Ti-based Amorphous Composite and Biocompatibility Research
10
作者 崔春翔 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第1期8-11,共4页
Ti-based alloy Ti64Zr5Fe6Si17Mo6Nb2 (At %) and Ti70Zr6Fe7Si17 (At %) ribbons with a width of 3-5 mm and thickness of about 80 um were fabricated by a single roller spun-melt technique. The feature of the alloy com... Ti-based alloy Ti64Zr5Fe6Si17Mo6Nb2 (At %) and Ti70Zr6Fe7Si17 (At %) ribbons with a width of 3-5 mm and thickness of about 80 um were fabricated by a single roller spun-melt technique. The feature of the alloy composition satisfies the three empirical rules. Amorphous structures of both alloys were confirmed by the X-ray diffraction pattern. To test the biocompatibility, both alloys were cultivated in the simulate body fluid (SBF). After 15 days, the Ca phosphates depositions on alloys surfaces were gained. Moreover, n(Ca)/n(P) atom ratio of the deposition is about 1.6/1, which approaches to that of human bone—1.66/1, suggesting that both alloys were with a favorable biocompatibility. 展开更多
关键词 mixing enthalpy amorphous forming ability biocompatibility.
下载PDF
MXene基水凝胶在创面修复领域的应用
11
作者 何蕊 李重一 +2 位作者 王瑞瑶 曾丹 范代娣 《中国组织工程研究》 CAS 北大核心 2025年第16期3486-3493,共8页
背景:MXene基水凝胶是一类纳米复合的多功能性水凝胶材料,在慢性创面(如糖尿病足、压疮、癌症及外伤性溃疡等)修复领域有广阔的应用前景。目的:综述MXene基水凝胶的优势及其在创面修复领域的应用和相关作用机制。方法:检索中国知网、维... 背景:MXene基水凝胶是一类纳米复合的多功能性水凝胶材料,在慢性创面(如糖尿病足、压疮、癌症及外伤性溃疡等)修复领域有广阔的应用前景。目的:综述MXene基水凝胶的优势及其在创面修复领域的应用和相关作用机制。方法:检索中国知网、维普、PubMed、Science Direct数据库中收录的文章,文献检索时限为2010年1月至2023年10月,中文检索关键词为“MXene,水凝胶,组织工程应用,创面修复”,英文检索关键词为“MXene,Hydrogel,Wound repair”,最终选取符合标准的70篇文献进行综述。结果与结论:MXene基水凝胶在创面组织工程应用中具有优异的力学、导电和光热性能及生物相容性和抗菌性等生物学功效,可以与其他有机物质和无机物质相结合,在水凝胶中产生更大的治疗作用。含有MXene的水凝胶可以结合创面监测、药物递送和缓释以及光热治疗等方式应用于皮肤创面。尽管MXene基水凝胶复合材料的设计和制备已经取得一些良好进展,但仍处于基础研究阶段,缺乏临床验证其功效性和安全性,具有很大发展潜力和应用空间。 展开更多
关键词 纳米功能材料 MXene 水凝胶 创面修复 生物相容性 创面监测 药物缓释
下载PDF
Establishment of an untransfected human corneal epithelial cell line and its biocompatibility with denuded amniotic membrane 被引量:22
12
作者 Ting-Jun Fan Bin Xu +3 位作者 Jun Zhao Hong-Shou Yang Rui-Xin Wang and Xiu-Zhong Hu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2011年第3期228-234,共7页
AIM: To establish an untransfected human corneal epithelial (HCEP) cell line and characterize its biocompatibility with denuded amniotic membrane (dAM). METHODS: The torn HCEP pieces were primarily cultured in DMEM/F1... AIM: To establish an untransfected human corneal epithelial (HCEP) cell line and characterize its biocompatibility with denuded amniotic membrane (dAM). METHODS: The torn HCEP pieces were primarily cultured in DMEM/F12 media (pH 7.2) supplemented with 20% fetal bovine serum and other necessary factors, yielding an HCEP cell line which was its growth performance, chromosome morphology, tumorigenicity and expression of marker proteins analyzed. In addition, the biocompatibility of HCEP cells with dAM was evaluated through histological and immunocytochemistry analyses and with light, electron and slit-lamp microscopies. RESULTS: HCEP cells proliferated to confluence in 3 weeks, which have been subcultured to passage 160. A continuous untransfected HCEP cell line, designated as utHCEPC01, was established with a population doubling time of 45.42 hours as was determined at passage 100. The cells retained HCEP cell properties as were approved by chromosomal morphology and the expression of keratin 3. They, with no tumorigenicity, formed a multilayer epithelium-like structure on dAMs through proliferation and differentiation during air-liquid interface culture, maintained expression of marker proteins including keratin 3 and integrin p 1 and attached tightly to dAMs. The reconstructed HCEP was highly transparent and morphologically and structurally similar to the original. CONCLUSION: An untransfected and non-tumorigenic HCEP cell line was established in this study. The cells maintained expression of marker proteins. The cell line was biocompatible with dAM. It holds the potential of being used for in vitro reconstruction of tissue-engineered HCEP, promising for the treatment of diseases caused by corneal epithelial disorders. 展开更多
关键词 human corneal epithelial cell cell line untransfected biocompatibility denuded amniotic membrane
下载PDF
Study of the degradation behavior and the biocompatibility of Mg-0.8Ca alloy for orthopedic implant applications 被引量:11
13
作者 Aya Mohamed Ahmed MEl-Aziz Hans-Georg Breitinger 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第2期249-257,共9页
Mg-Ca alloys have recently attracted great attention towards the research in the field of orthopedic biodegradable implants.This study presents an in vitro degradation assessment of Mg-0.8Ca(0.8 wt.%of Ca)alloy in Han... Mg-Ca alloys have recently attracted great attention towards the research in the field of orthopedic biodegradable implants.This study presents an in vitro degradation assessment of Mg-0.8Ca(0.8 wt.%of Ca)alloy in Hank’s balanced salt solution(HBSS).Immersion,hydrogen evolution and electrochemical behavior was studied as well as the cytotoxicity of the degradation products.Morphology and phase composition of the corrosion products were studied using SEM,EDX and XRD techniques.Degradation in HBSS resulted in the formation of the needle-shaped carbonated hydroxyapatite which was similar to the biological apatite in the human bone.Degradation kinetics showed that Mg-0.8Ca alloy had approximately 3-fold faster degradation rate than the pure Mg(1.08±0.38 mm/year for Mg-0.8Ca and 0.35±0.17 mm/year for pure Mg),as observed in two independent experiments.Both,pure Mg and Mg-0.8Ca alloy were biocompatible,generating no cytotoxic degradation products against human-derived HEK 293 cells.Thus,the Mg-0.8Ca alloy was found to be a promising biodegradable implant in terms of bioactivity and compatibility with human cell lines.Depending on the application of the implant and the estimated healing time of the bone,the desired degradation rate of an implant can be controlled by the Mg-Ca composition of such alloys. 展开更多
关键词 Mg-Ca alloys BIODEGRADABILITY Orthopedic implants biocompatibility TOXICITY HYDROXYAPATITE
下载PDF
Electropolishing of NiTi for Improving Biocompatibility 被引量:4
14
作者 Wei WU Xinjie LIU +2 位作者 Huimin HAN Dazhi YANG Shoudong LU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第6期926-930,共5页
A modified electrolyte (CH3COOH-HClO4-A-B) for electropolishing (EP) of NiTi was presented for improving the corrosion resistance and biocompatibility of the alloy. Using the proposed parameters, a homogeneous and... A modified electrolyte (CH3COOH-HClO4-A-B) for electropolishing (EP) of NiTi was presented for improving the corrosion resistance and biocompatibility of the alloy. Using the proposed parameters, a homogeneous and uniform surface was obtained. Atomic force microscopy (AFM) revealed that the surface roughness (Ra) for EP sample (23.21 nm) was close to mechanical polishing (MP) sample (19.36 nm). Analysis by X-ray photoelectron spectroscopy (XPS) showed that Ti/Ni ratio increased from 3.1 for MP sample to 27.6 for EP sample. Measurements using potentiodynamic polarization in Hanks' solution showed that no pitting occurred for EP sample even though the applied potential increased up to 1500 mV (vs SCE), while the MP sample was broken down at 650 mV. The present study indicates that electropolishing NiTi with this modified electrolyte contributes to the improved biocompatibility of NiTi. 展开更多
关键词 NITI ELECTROPOLISHING XPS Corrosion resistance biocompatibility
下载PDF
Establishment of an untransfected human corneal stromal cell line and its biocompatibility to acellular porcine corneal stroma 被引量:5
15
作者 Ting-Jun Fan Xiu-Zhong Hu +4 位作者 Jun Zhao Ying Niu Wen-Zhuo Zhao Miao-Miao Yu and Yuan Ge 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2012年第3期286-292,共7页
AIM: To establish an untransfected human corneal stromal (HCS) cell line and characterize its biocompatibility to acellular porcine corneal stoma (aPCS). METHODS: Primary culture was initiated with a pure population o... AIM: To establish an untransfected human corneal stromal (HCS) cell line and characterize its biocompatibility to acellular porcine corneal stoma (aPCS). METHODS: Primary culture was initiated with a pure population of HCS cells in DMEM/F12 media (pH 7.2) containing 20% fetal bovine serum and various necessary growth factors. The established cell line was characterized by growth property, chromosome analysis, tumorigenicity assay, expression of marker proteins and functional proteins. Furthermore, the biocompatibility of HCS cells with aPCS was examined through histological and immunocytochemistry analyses and with light, electron microscopies. RESULTS: HCS cells proliferated to confluence 2 weeks later in primary culture and have been subcultured to passage 140 so far. A continuous untransfected HCS cell line with a population doubling time of 41.44 hours at passage 80 has been determined. Results of chromosome analysis, morphology, combined with the results of expression of marker protein and functional proteins suggested that the cells retained HCS cell properties. Furthermore, HCS cells have no tumorigenicity, and with excellent biocompatibility to aPCS. CONCLUSION: An untransfected and non-tumorigenic HCS cell line has been established, and the cells maintained positive expression of marker proteins and functional proteins. The cell line, with excellent biocompatibility to aPCS, might be used for in vitroreconstruction of tissue-engineered HCS. 展开更多
关键词 human corneal stromal cells cell line untransfected biocompatibility acellular porcine corneal stroma
下载PDF
A review on biocompatibility nature of hydrogels with 3D printing techniques,tissue engineering application and its future prospective 被引量:4
16
作者 Jabran Saroia Wang Yanen +3 位作者 Qinghua Wei Kun Zhang Tingli Lu Bo Zhang 《Bio-Design and Manufacturing》 SCIE 2018年第4期265-279,共15页
Recently,tissue engineering (TE)is one of the fast growing research fields due the accessibility of extra-molecular matrix (ECM)at cellular and molecular level with valuable potential prospective of hydrogels.The enha... Recently,tissue engineering (TE)is one of the fast growing research fields due the accessibility of extra-molecular matrix (ECM)at cellular and molecular level with valuable potential prospective of hydrogels.The enhancement in the production of hydrogel-based cellular scaffolds with the structural composition of ECM has been accelerated with involvement of rapid prototyping techniques.Basically,the recreation of ECM has been derived from naturally existed or synthetic hydrogelbased polymers.The rapid utilization of hydrogels in TE puts forward the scope of bioprinfing for the fabrication of the functional biological tissues,cartilage,skin and artificial organs.The main focus of the researchers is on biofabrication of the biomaterials with maintaining the biocompatibility,biodegradability and increasing growth efficiency.In this review, biological development in the structure and cross-linking connections of natural or synthetic hydrogels are discussed.The methods and design criteria that influence the chemical and mechanical properties and interaction of seeding cells before and after the implantations are also demonstrated.The methodology of bioprinting techniques along with recent development has also been reviewed.In the end,some capabilities and shortcomings are pointed out for further development of hydrogels-based scaffolds and selection of bioprinting technology depending on their application. 展开更多
关键词 HYDROGELS Extra-molecular matrix (ECM) biocompatibility BIOPRINTING Tissue engineering
下载PDF
Study on the optical property and biocompatibility of a tissue engineering cornea 被引量:3
17
作者 Yukiko Nakahara Dwight Xuan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2012年第1期45-49,共5页
AIM: To study the optical property and biocompatibility of a tissue engineering cornea. METHODS: The cross-linker of N- (3-Dimethylaminoropyl)-N'ethylcarbodiimide hydrochloride (EDC)/ N-Hydroxysuccinimide (NHS) wa... AIM: To study the optical property and biocompatibility of a tissue engineering cornea. METHODS: The cross-linker of N- (3-Dimethylaminoropyl)-N'ethylcarbodiimide hydrochloride (EDC)/ N-Hydroxysuccinimide (NHS) was mixed with Type I collagen at 10% (weight/volume). The final solution was molded to the shape of a corneal contact lens. The collagen concentrations of 10%, 12.5%, 15%, 17.5% and 20% artificial corneas were tested by UV/vis-spectroscopy for their transparency compared with normal rat cornea. 10-0 sutures were knotted on the edges of substitute to measure the corneal buttons's mechanical properties. Normal rat corneal tissue primary culture on the collagen scaffold was observed in 4 weeks. Histopathologic examinations were performed after 4 weeks of in vitro culturing. RESULTS: The collagen scaffold appearance was similar to that of soft contact lens. With the increase of collagen concentration, the transparency of artificial corneal buttons was diminished, but the toughness of the scaffold was enhanced. The scaffold transparency in the 10% concentration collagen group resembled normal rat cornea. To knot and embed the scaffold under the microscope, 20% concentration collagen group was more effective during implantation than lower concentrations of collagen group. In the first 3 weeks, corneal cell proliferation was highly active. The shapes of cells that grew on the substitute had no significant difference when compared with the cells before they were moved to the scaffold. However, on the fortieth day, most cells detached from the scaffold and died. Histopathologic examination of the primary culture scaffold revealed well grown corneal cells tightly attached to the scaffold in the former culturing. CONCLUSION: Collagen scaffold can be molded to the shape of soft contact corneal lens with NHS/EDC. The biological stability and biocompatibility of collagen from animal species may be used as material in preparing to engineer artificial corneal scaffold. 展开更多
关键词 tissue engineering collagen cross-linking scaffold primary culture in vitro optical property biocompatibility
下载PDF
Biocompatibility of vascular stents manufactured using metal injection molding in animal experiments 被引量:3
18
作者 Chang SHU Hao HE +5 位作者 Bo-wen FAN Jie-hua LI Tun WANG Dong-yang LI Yi-min LI Hao HE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第2期569-580,共12页
This study aimed to evaluate the feasibility and safety of a novel stent manufactured by metal injection molding(MIM)in clinical practice through animal experiments.Vessel stents were prepared using powder injection m... This study aimed to evaluate the feasibility and safety of a novel stent manufactured by metal injection molding(MIM)in clinical practice through animal experiments.Vessel stents were prepared using powder injection molding technology to considerably improve material utilization.The influence of MIM carbon impurity variation on the mechanical properties and corrosion resistance of 316L stainless steel was studied.In vitro cytotoxicity and animal transplantation tests were also carried out to evaluate the safety of MIM stents.The results showed that the performance of 316L stainless steel was very sensitive to the carbon content.Carbon fluctuations should be precisely controlled during MIM.All MIM stents were successfully implanted into the aortas of the dogs,and the MIM 316L stents had no significant cytotoxicity.The novel intravascular stent manufactured using MIM can maintain a stable form and structure with fast endothelialization of the luminal surface of the stent and ensure long-term patency in an animal model.The novel intravascular stent manufactured using MIM demonstrates favorable structural,physical,and chemical stability,as well as biocompatibility,offering promising application in clinical practice. 展开更多
关键词 vascular stent metal injection molding cytotoxicity test animal experiment biocompatibility
下载PDF
In vitro biocompatibility of three chitosan/polycation composite materials for nerve regeneration 被引量:2
19
作者 Zhenhuan Zheng Yujun Wei Gan Wang Yandao Gong Xiufang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第8期837-842,共6页
BACKGROUND:It has been reported that chitosan nerve conduits could support axon elongation and improve relevant function during in vivo nerve regeneration. OBJECTIVE: To investigate in vitro biocompatibility of thre... BACKGROUND:It has been reported that chitosan nerve conduits could support axon elongation and improve relevant function during in vivo nerve regeneration. OBJECTIVE: To investigate in vitro biocompatibility of three novel, chitosan/polycation composite materials for nerve regeneration in cultured mouse Schwann cells and PC12 cells. DESIGN, TIME AND SETTING: The observational, control experiments for nerve tissue engineering were performed at the Department of Biological Sciences and Biotechnology of Tsinghua University from August 2007 to January 2008. MATERIALS: Mouse Schwann cells were isolated from the sciatic nerve of 5–7-day-old BALB/C mice. PC12 cells were purchased from the American Type Culture Collection (ATCC, USA). Chitosan was purchased from Tsingdao Haisheng Co., China. Poly-L-lysine hydrochloride (PLL), polyethyleneimine (PEI) poly-L-ornithine hydrobromide (POR), and S-100 antibody was purchased from Sigma Chemical Co., USA. Cell Counting Kit-8 (CCK-8) was purchased from Dojindo Chemical Co., Japan. METHODS: Three chitosan/polycation composite materials for nerve regeneration (PLL-0.25, PEI-0.25, and POR-0.25) were produced by blending chitosan with 0.25% (w/w) poly-L-lysine, polyethyleneimine, and poly-L-ornithine. Pure chitosan was utilized as the control. After 3 days of culture, the morphology of mouse Schwann and PC12 cells cultured on all substrates was observed with an inverted phase contrast microscope. Mouse Schwann cells were stained by immunofluorescence labeling S-100 protein and nuclei, followed by identification with a confocal laser-scanning microscope. The amount of proliferating mouse Schwann and PC12 cells was determined by CCK-8 after 1, 3, and 5 days in culture. The level of PC12 cell differentiation on all substrates was assessed by measuring neurite length at 1, 3, and 5 days after seeding. MAIN OUTCOME MEASURES: Morphology and amount of proliferation of mouse Schwann cells and PC12 cells cultured on chitosan and three polycation-modified materials, as well as amount of differentiation in PC12 cells on these substrates. RESULTS: (1) Morphology of mouse Schwann cells and PC12 cells on all substrates: after 3 days in culture on three different chitosan/polycation composite substrates, Schwann cells were connected to each other and exhibited greater proliferation, compared to the chitosan control. In particular, on PLL-0.25 and POR-0.25 substrates, some cells congregated and nearly reached confluence. The PC12 cells on chitosan substrate, after 3 days in culture, maintained a round shape; few exhibited a bipolar shape and began to form neurite extensions. However, on PLL-0.25 and POR-0.25 substrates, most PC12 cells displayed a bipolar shape with obvious neurite outgrowth, and almost grew as an adherent, spreading monolayer. (2) Proliferation of mouse Schwann cells and PC12 cells on all substrates: on the first day, Schwann cell proliferation on the three composite substrates was significantly greater than the cells on chitosan control (P 〈 0.01). After 3 and 5 days in culture, PLL-0.25 and POR-0.25 substrates resulted in greater cell proliferation when compared to pure chitosan (P 〈 0.01). On the third and fifth day in culture PC12 cell proliferation on PLL-0.25 and POR-0.25 was significantly greater than on chitosan substrate (P 〈 0.01). (3) Differentiation of PC12 cells on all substrates: at all time points, the average neurite length of cells cultured on composite materials was significantly longer than on chitosan control (P 〈 0.05-0.01). Cells on PLL-0.25 exhibited the longest average neurite length at days 3 and 5. CONCLUSION: Mouse Schwann cells and PC12 cells exhibit in vitro biocompatibility with poly-L-lysine-and poly-L-ornithine-modified substrates, which indicates that these substrates could serve as suitable substrates for peripheral nerve regeneration. 展开更多
关键词 biocompatibility CHITOSAN nerve regeneration POLYCATION
下载PDF
In vitro biodegradability and biocompatibility of porous Mg-Zn scaffolds coated with nano hydroxyapatite via pulse electrodeposition 被引量:2
20
作者 Z.S.SEYEDRAOUFI Sh.MIRDAMADI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4018-4027,共10页
The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse ele... The biodegradability and biocompatibility of porous Mg-2Zn(mass fraction, %) scaffolds coated with nano hydroxyapatite(HAP) were investigated. The nano HAP coating on Mg-2Zn scaffolds was prepared by the pulse electrodeposition method. The as-deposited scaffolds were then post-treated with alkaline solution to improve the biodegradation behavior and biocompatibility for implant applications. The microstructure and composition of scaffold and nano HAP coating, as well as their degradation and cytotoxicity behavior in simulated body fluid(SBF) were investigated. The post-treated coating is composed of needle-like HAP with the diameter less than 100 nm developed almost perpendicularly to the substrate, which exhibits a similar composition to natural bone. It is found that the products of immersion in SBF are identified to be HAP,(Ca,Mg)3(PO4)2 and Mg(OH)2. The bioactivity, biocompatibility and cell viabilities for the as-coated and post-treated scaffold extracts are higher than those for the uncoated scaffold. MG63 cells are found to adhere and proliferate on the surface of the as-coated and post-treated scaffolds, making it a promising choice for medical application. The results show that the pulse electrodeposition of nano HAP coating and alkaline treatment is a useful approach to improve the biodegradability and bioactivity of porous Mg-Zn scaffolds. 展开更多
关键词 porous Mg-Zn scaffold hydroxyapatite coating pulse electrodeposition BIODEGRADABILITY biocompatibility
下载PDF
上一页 1 2 199 下一页 到第
使用帮助 返回顶部