期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Improved Corrosion Behavior of Biodegradable Mg-4Zn-1Mn Alloy Modified by Sr/F co-doped CaP Micro-arc Oxidation Coatings
1
作者 Weirong LI Yanfang LI +7 位作者 Qian LI Xuan XIONG Fangfei LIU Ronghui LI Heng LI Dong PANG Jia LU Xuan ZHANG 《Research and Application of Materials Science》 2023年第2期1-8,共8页
The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristi... The Sr/F co-doped CaP(Sr/F-CaP)coatings were prepared by micro-arc oxidation(MAO)under different voltages to modify the microstructure and corrosion behavior of Mg-4Zn-1Mn alloy.The surface and interface characteristics investigated using scanning electron microscopy(SEM)and energy dispersive X-ray spectrometer(EDS)showed that the MAO coatings displayed uneven crater-like holes and tiny cracks under lower voltage,while they exhibited relatively homogeneous crater-like holes without cracks under higher voltage.The thickness of MAO coatings increased with increasing voltage.The corrosion behavior of Mg-4Zn-1Mn alloy was improved by the MAO coatings.The MAO coatings prepared under 450 V and 500 V voltages possessed the best corrosion resistance with regard to the electrochemical corrosion tests and immersion corrosion tests,respectively.The MAO coatings fabricated under 450-500 V could provide a better corrosion protection effect for the substrate. 展开更多
关键词 biodegradable mg alloys mg-4Zn-1Mn alloy Micro-arc oxidation Sr/F co-doped CaP coatings
下载PDF
Microstructure and mechanical and corrosion properties of hot-extruded Mg–Zn–Ca–(Mn)biodegradable alloys 被引量:12
2
作者 V.E.Bazhenov A.V.Li +6 位作者 A.A.Komissarov A.V.Koltygin S.A.Tavolzhanskii V.A.Bautin O.O.Voropaeva A.M.Mukhametshina A.A.Tokar 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1436-1451,共16页
Biodegradable Mg-based implants are widely used in clinical applications because they exhibit mechanical properties comparable to those of human bone and require no revision surgery for their removal.Among Mg-based al... Biodegradable Mg-based implants are widely used in clinical applications because they exhibit mechanical properties comparable to those of human bone and require no revision surgery for their removal.Among Mg-based alloys,Mg–Zn–Ca–(Mn)alloys have been extensively investigated for medical applications because the constituent elements of these alloys,Mg,Zn,Ca,and Mn,are present in human tissues as nutrient elements.In this study,we investigated the effect of the hot extrusion temperature on the microstructure,mechanical properties,and biodegradation rate of Mg–Zn–Ca–(Mn)alloys.The results showed that the addition of Mn and a decrease in the extrusion temperature resulted in grain refinement followed by an increase in the strength and a decrease in the elongation at fracture of the alloys.The alloys showed different mechanical properties along the directions parallel and perpendicular to the extrusion direction.The corrosion test of the alloys in the Hanks’solution revealed that the addition of Mn significantly reduced the corrosion rate of the alloys.The Mg–2 wt%Zn–0.7 wt%Ca–1 wt%Mn alloy hot-extruded at 300℃ with an ultimate tensile strength of 278MPa,an yield strength of 229MPa,an elongation at fracture of 10%,and a corrosion rate of 0.3 mm/year was found to be suitable for orthopedic implants. 展开更多
关键词 biodegradable mg alloy mg–Zn–Ca–(Mn) Hot extrusion Mechanical properties Corrosion rate
下载PDF
Friction and wear behaviors of biodegradable Mg-6Gd-0.5Zn-0.4Zr alloy under simulated body fluid condition 被引量:2
3
作者 Jianwei Dai Xiaobo Zhang +3 位作者 Qiao Yin Shengnan Ni Zhixin Ba Zhangzhong Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2017年第4期448-453,共6页
The friction and wear behaviors of biodegradable Mg-6Gd-0.5Zn-0.4Zr(wt%,GZ60K)alloy were evaluated under simulated body fluid(SBF)condition using ball-on-disk configuration and compared with those under dry sliding co... The friction and wear behaviors of biodegradable Mg-6Gd-0.5Zn-0.4Zr(wt%,GZ60K)alloy were evaluated under simulated body fluid(SBF)condition using ball-on-disk configuration and compared with those under dry sliding condition.The results show that under dry sliding and SBF conditions,the friction coefficient declines with increasing applied load and keeps stable with prolonging sliding time.The friction coefficient of the alloy effectively decreases in SBF as compared to dry sliding due to lubrication caused by SBF.The real wear rates under SBF condition are lower than those under dry sliding condition for each parameter.Nevertheless,the nominal wear rates are higher in SBF which are attributed to the more mass loss caused by corrosion but not wear.Both the nominal wear rate in SBF and the dry sliding wear rate increase with increasing applied load,and they decline firstly and then keep stable with prolonging sliding time.It is concluded that the wear of the alloy is restricted by the SBF,but the corrosion of the alloy is aggravated by the wear. 展开更多
关键词 biodegradable mg alloy SBF Friction coefficient Wear behavior
下载PDF
Evaluation of the biodegradation product layer on Mg-1Zn alloy during dynamical strain
4
作者 Lianxi Chen Cheng Guo +6 位作者 Carsten Blawert Junjie Yang Dongchu Chen Xiaojian Wang Zhentao Yu Mikhail L.Zheludkevich Wei Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第5期1842-1855,共14页
Magnesium(Mg)alloys are attractive biodegradable implant materials.The degradation products on Mg alloys play a critical role in the stability of the interface between implant and surrounding tissue.In the present stu... Magnesium(Mg)alloys are attractive biodegradable implant materials.The degradation products on Mg alloys play a critical role in the stability of the interface between implant and surrounding tissue.In the present study,the effects of dynamic deformation on the interface layer of biomedical Mg-1Zn alloy were investigated using the constant extension rate tensile tests(CERT)coupled with electrochemical impedance spectroscopy(EIS).The deformation of the Mg-1Zn alloy had an adverse influence on the impedance of the surface degradation layer formed in simulated body fluid that only containing inorganic compounds.However,the surface degradation layer with improved corrosion resistance was obtained for the strained samples tested in protein-containing simulated body fluid.The spontaneous or enhanced adsorption of protein into the degradation product led to a flexible and stable hybrid anti-corrosive layer.A relationship between the dynamic deformation of Mg alloy and the impendence of the degradation layer was established,which demonstrates the necessity for in situ characterisation of the evolution of the surface layer under dynamic condition. 展开更多
关键词 Degradation layer Protein biodegradable mg alloy Dynamic deformation IMPEDANCE
下载PDF
Challenges and Solutions for the Additive Manufacturing of H) Biodegradable Magnesium Implants 被引量:17
5
作者 Yinchuan Wang Penghuai Fu +5 位作者 Nanqing Wang Liming Peng Bin Kang Hui Zeng Guangyin Yuan Wenjiang Ding 《Engineering》 SCIE EI 2020年第11期1267-1275,共9页
Due to their capability of fabricating geometrically complex structures,additive manufacturing(AM)techniques have provided unprecedented opportunities to produce biodegradable metallic implants—especially using Mg al... Due to their capability of fabricating geometrically complex structures,additive manufacturing(AM)techniques have provided unprecedented opportunities to produce biodegradable metallic implants—especially using Mg alloys,which exhibit appropriate mechanical properties and outstanding biocompatibility.However,many challenges hinder the fabrication of AM-processed biodegradable Mg-based implants,such as the difficulty of Mg powder preparation,powder splash,and crack formation during the AM process.In the present work,the challenges of AM-processed Mg components are analyzed and solutions to these challenges are proposed.A novel Mg-based alloy(Mg-Nd-Zn-Zr alloy,JDBM)powder with a smooth surface and good roundness was first synthesized successfully,and the AM parameters for Mg-based alloys were optimized.Based on the optimized parameters,porous JDBM scaffolds with three different architectures(biomimetic,diamond,and gyroid)were then fabricated by selective laser melting(SLM),and their mechanical properties and degradation behavior were evaluated.Finally,the gyroid scaffolds with the best performance were selected for dicalcium phosphate dihydrate(DCPD)coating treatment,which greatly suppressed the degradation rate and increased the cytocompatibility,indicating a promising prospect for clinical application as bone tissue engineering scaffolds. 展开更多
关键词 Additive manufacturing Selective laser melting biodegradable mg alloys Tissue engineering scaffolds Surface treatment
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部