期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Improving corrosion resistance of additively manufactured WE43 magnesium alloy by high temperature oxidation for biodegradable applications
1
作者 Jinge Liu Bangzhao Yin +7 位作者 Fei Song Bingchuan Liu Bo Peng Peng Wen Yun Tian Yufeng Zheng Xiaolin Ma Caimei Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期940-953,共14页
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples... Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications. 展开更多
关键词 Laser powder bed fusion biodegradable magnesium alloy High temperature oxidation Corrosion resistance WE43.
下载PDF
Surface Modification on Biodegradable Magnesium Alloys as Orthopedic Implant Materials to Improve the Bio-adaptability:A Review 被引量:23
2
作者 Peng Wan Lili Tan Ke Yang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期827-834,共8页
Magnesium (Mg) and its alloys as a novel kind of biodegradable material have attracted much funda- mental research and valuable exploration to develop its clinical application, Mg alloys degrade too fast at the earl... Magnesium (Mg) and its alloys as a novel kind of biodegradable material have attracted much funda- mental research and valuable exploration to develop its clinical application, Mg alloys degrade too fast at the early stage after implantation, thus commonly leading to some problems such as osteolysis, early fast mechanical loss, hydric bubble aggregation, gap formation between the implants and the tissue. Surface modification is one of the effective methods to control the degradation property of Mg alloys to adapt to the need of organism. Some coatings with bioactive elements have been developed, especially for the micro-arc oxidation coating, which has high adhesion strength and can be added with Ca, P, and Sr elements. Chemical deposition coating including bio-mimetic deposition coating, electro-deposition coating and chemical conversion coating can provide good anticorrosion property as well as better bioactivity with higher Ca and P content in the coating. From the biodegradation study, it can be seen that surface coating protected the Mg alloys at the early stage providing the Mg alloy substrate with lower degra-dation rate. The biocompatibility study showed that the surface modification could provide the cell and tissue stable and weak alkaline surface micro-environment adapting to the cell adhesion and tissue growth. The surface modification also decreased the mechanical loss at the early stage adapting to the load- bearing requirement at this stage. From the interface strength between Mg alloys implants and the surrounding tissue study, it can be seen that the surface modification improved the bio-adhesion of Mg alloys with the surrounding tissue, which is believed to be contributed to the tissue adaptability of the surface modification. Therefore, the surface modification adapts the biodegradable magnesium alloys to the need of hiodegradation, biocompatibility and mechanical loss property. For the different clinical application, different surface modification methods can be provided to adapt to the clinical requirements for the Mg alloy implants. 展开更多
关键词 Bio-adaptability Coating biodegradable magnesium alloys Orthopedic implants
原文传递
Preparation and characterization of Ca-P coating on AZ31 magnesium alloy 被引量:2
3
作者 谭丽丽 王强 +3 位作者 耿芳 席小松 邱剑红 杨柯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期648-654,共7页
A Ca-P coating consisting of biodegradableβ-tricalcium phosphate[β-TCP,β-Ca3(PO4)2]accepted for medical application was coated on a biodegradable AZ31 alloy by chemical deposition to improve the corrosion resistanc... A Ca-P coating consisting of biodegradableβ-tricalcium phosphate[β-TCP,β-Ca3(PO4)2]accepted for medical application was coated on a biodegradable AZ31 alloy by chemical deposition to improve the corrosion resistance.The good bonding strength of the coating is obtained.The results show that the corrosion potential of the Ca-P coated AZ31 alloy increases significantly,and MG63 cells show good adherence,proliferation and differentiation on the surface of the coated alloy.The Ca-P coating might be an effective way to improve the surface bioactivity of magnesium alloys. 展开更多
关键词 biodegradable magnesium alloy Β-TCP chemical deposition BIOCOMPATIBILITY
下载PDF
Effect of heat treatment on microstructure, mechanical properties and in vitro degradation behavior of as-extruded Mg-2.7Nd-0.2Zn-0.4Zr alloy 被引量:4
4
作者 章晓波 薛亚军 王章忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2343-2350,共8页
Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging trea... Mg-2.7Nd-0.2Zn-0.4Zr (mass fraction, %) alloy was designed for degradable biomedical material. The ingots of the alloy were solution treated and then hot extruded. The extruded rods were heat treated with aging treatment, solution treatment and solution+aging treatment, respectively. Microstructures of the alloy were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Mechanical properties at room temperature were tested. In vitro degradation behavior of the alloy immersed in simulated body fluid was measured by hydrogen evolution and mass loss tests. The degradation morphologies of the alloy with and without degradation products were observed by SEM. The results show that the grains grow apparently after solution treatment. Solution treatment improves the elongation of as-extruded alloy significantly and decreases the strength, while aging treatment improves the strength and reduces the elongation of the alloy. The yield ratio is reduced by heat treatment. The in vitro degradation results of the alloy show that solution treatment on the as-extruded alloy results in a little higher degradation rate and aging treatment on the alloy can reduce degradation rate slightly. 展开更多
关键词 biodegradable magnesium alloy mechanical properties in vitro degradation behavior heat treatment
下载PDF
Electrochemical noise analysis on the pit corrosion susceptibility of biodegradable AZ31 magnesium alloy in four types of simulated body solutions 被引量:4
5
作者 changgang wang liping wu +5 位作者 fang xue rongyao ma ini-ibehe nabuk etim xuehui hao junhua dong wei ke 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第10期1876-1884,共9页
Magnesium alloys have been investigated as biodegradable implant materials since the last century. Non-uniform degradation caused by local corrosion limits their application, and no appropriate technology has been use... Magnesium alloys have been investigated as biodegradable implant materials since the last century. Non-uniform degradation caused by local corrosion limits their application, and no appropriate technology has been used in the research. In this study, electrochemical noise has been used to study the pit corrosion on magnesium alloy AZ31 in four types of simulated body solutions, and the data have been analyzed using wavelet analysis and stochastic theory. Combining these with the conventional polarization curves, mass loss tests and scanning electron microscopy, the electrochemical noise results implied that AZ31 alloy in normal saline has the fastest corrosion rate, a high pit initiation rate, and maximum pit growth probability. In Hanks' balanced salt solution and phosphate-buffered saline, AZ31 alloy has a high pit initiation rate and larger pit growth probability, while in simulated body fluid, AZ31 alloy has the slowest corrosion rate, lowest pit initiation rate and smallest pit growth probability. 展开更多
关键词 biodegradable magnesium alloy Electrochemical noise (EN) Pit corrosion susceptibilities Wavelet analysis Stochastic model
原文传递
Corrosion fatigue of the extruded Mg-Zn-Y-Nd alloy in simulated body fluid 被引量:3
6
作者 Mengyao Liu Jianfeng Wang +4 位作者 Shijie Zhu Yabo Zhang Yufeng Sun Liguo Wang Shaokang Guan 《Journal of Magnesium and Alloys》 SCIE 2020年第1期231-240,共10页
Magnesium alloys were considered to be used as biodegradable implants due to their biocompatibility,biodegradability and nontoxicity.However,under the simultaneous action of corrosive environment and mechanical loadin... Magnesium alloys were considered to be used as biodegradable implants due to their biocompatibility,biodegradability and nontoxicity.However,under the simultaneous action of corrosive environment and mechanical loading in human body,magnesium alloys are easy to be affected by corrosion fatigue and stress corrosion cracking.In this work,the fatigue behavior of the extruded Mg-Zn-Y-Nd alloy used for vascular stents was studied both in air and in simulated body fluid(SBF).It was revealed that the fatigue limit of as-extruded Mg-Zn-Y-Nd alloy in air is about 65 MPa at 10^7 cycles,while there is no limit in SBF and shows a linear relationship between the fatigue life and stress amplitudes.The fatigue crack source in air was formed by the inclusions and defects.However,the stress corrosion and hydrogen embrittlement are the main reasons for the formation of the fatigue initial crack source in SBF. 展开更多
关键词 biodegradable magnesium alloy Corrosion fatigue Simulated body fluid Fatigue crack source
下载PDF
Research and development strategy for biodegradable magnesium-based vascular stents:a review 被引量:2
7
作者 Jialin Niu Hua Huang +3 位作者 Jia Pei Zhaohui Jin Shaokang Guan Guangyin Yuan 《Biomaterials Translational》 2021年第3期236-247,共12页
Magnesium alloys are an ideal material for biodegradable vascular stents,which can be completely absorbed in the human body,and have good biosafety and mechanical properties.However,the rapid corrosion rate and excess... Magnesium alloys are an ideal material for biodegradable vascular stents,which can be completely absorbed in the human body,and have good biosafety and mechanical properties.However,the rapid corrosion rate and excessive localized corrosion,as well as challenges in the preparation and processing of microtubes for stents,are restricting the clinical application of magnesium-based vascular stents.In the present work we will give an overview of the recent progresses on biodegradable magnesium based vascular stents including magnesium alloy design,high-precision microtubes processing,stent shape optimisation and functional coating preparation.In particular,the Triune Principle in biodegradable magnesium alloy design is proposed based on our research experience,which requires three key aspects to be considered when designing new biodegradable magnesium alloys for vascular stents application,i.e.biocompatibility and biosafety,mechanical properties,and biodegradation.This review hopes to inspire the future studies on the design and development of biodegradable magnesium alloy-based vascular stents. 展开更多
关键词 biodegradable magnesium alloy vascular stents functional coatings synthesis high-precision microtubes processing magnesium alloy design stent shape optimisation
原文传递
Microstructure, Mechanical Properties, Corrosion Behavior and Biocompatibility of As-Extruded Biodegradable Mg–3Sn–1Zn–0.5Mn Alloy 被引量:12
8
作者 Lida Hou Zhen Li +6 位作者 Hong Zhao Yu Pan Sergey Pavlinich Xiwei Liu Xinlin Li Yufeng Zheng Li Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期874-882,共9页
The microstructure evolution and mechanical properties of biodegradable Mg-3Sn-1Zn-0.5Mn alloys were investigated by the optical microscopy, X-ray diffractometer and a universal material testing machine. The corrosion... The microstructure evolution and mechanical properties of biodegradable Mg-3Sn-1Zn-0.5Mn alloys were investigated by the optical microscopy, X-ray diffractometer and a universal material testing machine. The corrosion and degradation behaviors were studied by potentiodynamic polarization method and immersion test in a simulated body fluid (SBF). It was found that the as-extruded Mg-3Sn-1Zn-0.5Mn alloy has the fine equiaxed grains which underwent complete dynamic recrystallization during the hot extrusion process, with the second phase particles of Mg2Sn precipitated on the grain boundaries and inside the grains. The tensile strength and elongation of as-extruded Mg-3Sn-1Zn-0.5Mn alloys were 244 ± 3.7 MPa and 19.3% ± 1.7%, respectively. The potentiodynamic polarization curves in SBF solution indicated the better corrosion resistance of the as-extruded Mg-3Sn-1Zn-0.5Mn alloy in the SBF solution. Immersion test in the SBF solution for 720 h revealed that the corrosion rate of as-extruded Mg-3Sn-1Zn-0.5Mn alloy was nearly 4±0.33 ram/year. The hemolysis rate of as-extruded Mg-3Sn-1Zn-0.5Mn alloy was lower than the safe value of 5% according to ISO 10993-4. As-extruded Mg-3Sn- 1Zn-0.5Mn alloy showed good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the rabbit, and no abnormalities were found after short-term implantation. It was revealed that the as-extruded Mg-3Sn-1Zn-0.5Mn alloy is a promising material for biodegradable implants, which possesses an interesting combination of preferred mechanical properties, better corrosion resistance and biocompatibility. 展开更多
关键词 biodegradable magnesium alloy Extrusion Mechanical property Corrosion Biocompatibility
原文传递
AZ91 Magnesium Alloy/Porous Hydroxyapatite Composite for Potential Application in Bone Repair 被引量:2
9
作者 Bin Chen Kai-Yang Yin +5 位作者 Tian-Feng Lu Bing-Yi Sun Qing Dong Jing-xu Zheng Chen Lu zhan-Chun Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期858-864,共7页
AZ91/HA composite was prepared by AZ91 magnesium alloy and porous HA using squeeze casting method. The microstructure and mechanical property of the AZ91/HA composite were studied. The results show that the molten AZ9... AZ91/HA composite was prepared by AZ91 magnesium alloy and porous HA using squeeze casting method. The microstructure and mechanical property of the AZ91/HA composite were studied. The results show that the molten AZ91 alloy completely infiltrated the preform without destroying the porous structure of the HA preform. The compressive strength of AZ91/HA composite increased significantly compared with that of the porous HA. The immersion test indicated that AzgI ahoy shows a lower corrosion resistance and is easier to be corroded in comparison with HA. 展开更多
关键词 biodegradable magnesium alloy Porous HA Composite Squeeze casting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部