期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Biodegradation Behavior of Starch in Simulated White Water System of Old Corrugated Cardboard Pulping Process 被引量:2
1
作者 Jinhuan Guo Liqin Liu +7 位作者 Xiaohong Zhang Zhengbai Cheng Shuangxi Nie Haibing Cao Na Li Md Manik Mian Xingye An Hongbin Liu 《Paper And Biomaterials》 CAS 2023年第1期50-62,共13页
Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be dec... Considering the serious barriers/issues induced by the accumulated starch generated in white water system of old corrugated cardboard(OCC)pulping process,large amounts of accumulated starch in white water would be decomposed by microorganisms and could not be utilized,thereby resulting in severe resource wastage and environmental pollution.This study mainly explored the effects of biodegradation/hydrolysis conditions of the two types of starch substrates(native starch and enzymatically(α-amylase)hydrolyzed starch),which were treated via microorganism degradation within the simulated white water from OCC pulping system and their biodegradation products on the key properties were characterized via X-ray diffraction(XRD),Fourier-transform infrared spectroscopy(FT-IR),and gel permeation chromatography(GPC)technologies.The effects of system temperature,pH value,starch concentration,and biodegradation time on starch biodegradation ratio and the characteristics of obtained biodegradated products from the two types of starches were studied.In addition,the effect ofα-amylase dosage on the biodegradation ratio of enzymatically hydrolyzed starch and its properties was investigated.It was found that the native starch presented a maximal degradation ratio at a system temperature of 55℃and pH value range of 5-7,respectively,the corresponding starch concentration within simulated white water system was 200 mg/L.Whereas the enzymatically hydrolyzed starch exhibited a highest degradation ratio at a system temperature of 50℃and pH value of 5.5,respectively,and the corresponding starch concentration within simulated white water system was 100 mg/L.It was verified that native starch is more readily bio-hydrolyzed and biodegradation-susceptive by microorganisms in simulated white water system of OCC pulping process,while the enzymatically hydrolyzed starch exhibits better biodegradation/hydrolysis resistance to the microbial degradation than that of native starch.This study provides a practical and interesting approach to investigate the starch hydrolysis or biodegradation behaviors in white water system of OCC pulping process,which would greatly contribute to the full recycling and valorized application of starch as a versatile additive during paperboard production. 展开更多
关键词 STARCH OCC pulping white water simulation hydrolysis resistance biodegradation behavior
下载PDF
Microstructure development and biodegradation behavior of additively manufactured Mg-Zn-Gd alloy with LPSO structure 被引量:6
2
作者 Youwen Yang Chenrong Ling +5 位作者 Yageng Li Shuping Peng Deqiao Xie Lida Shen Zongjun Tian Cijun Shuai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第13期1-14,共14页
Biodegradable magnesium(Mg)alloy has been considered as a new generation of orthopedic implant ma-terial.Nevertheless,local corrosion usually occurs since the severe micro-galvanic behavior amongα-Mg and precipitates... Biodegradable magnesium(Mg)alloy has been considered as a new generation of orthopedic implant ma-terial.Nevertheless,local corrosion usually occurs since the severe micro-galvanic behavior amongα-Mg and precipitates,and results in too rapid degradation.In this study,porous Mg-Zn-Gd part was fabricated using laser additive manufacturing combined with solution heat treatment.During heat treatment,the precipitatedβ-(Mg,Zn)_(3) Gd phase dissolved inα-Mg,and reduced the energy threshold of stacking faults on basal planes,which finally triggered the formation of long period stacking ordered(LPSO)phase.The LPSO phases owned minor potential difference withα-Mg,thus causing less micro-galvanic corrosion ten-dency as compared toβ-(Mg,Zn)_(3) Gd phase.More importantly,they were uniformly distributed within theα-Mg grains and showed different orientations between adjacent grains.As a result,the LPSO-reinforced Mg-Zn-Gd tended to expand laterally during corrosion evolution,and achieved uniform degradation with a considerably reduced degradation rate of 0.34 mm/year.Moreover,in-vitro cell tests further proved its favorable biocompatibility.This work highlighted the additively manufactured Mg-Zn-Gd with LPSO structure showed great potential for orthopedic application. 展开更多
关键词 Additive manufacturing Mg alloy LPSO structure biodegradation behavior BIOCOMPATIBILITY
原文传递
Influence of heat treatment on microstructure,mechanical and corrosion behavior of WE43 alloy fabricated by laser-beam powder bed fusion 被引量:5
3
作者 Chenrong Ling Qiang Li +6 位作者 Zhe Zhang Youwen Yang Wenhao Zhou Wenlong Chen Zhi Dong Chunrong Pan Cijun Shuai 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期258-275,共18页
Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.Howe... Magnesium(Mg)alloys are considered to be a new generation of revolutionary medical metals.Laser-beam powder bed fusion(PBF-LB)is suitable for fabricating metal implants withpersonalized and complicated structures.However,the as-built part usually exhibits undesirable microstructure and unsatisfactory performance.In this work,WE43 parts were firstly fabricated by PBF-LB and then subjected to heat treatment.Although a high densification rate of 99.91%was achieved using suitable processes,the as-built parts exhibited anisotropic and layeredmicrostructure with heterogeneously precipitated Nd-rich intermetallic.After heat treatment,fine and nano-scaled Mg24Y5particles were precipitated.Meanwhile,theα-Mg grainsunderwent recrystallization and turned coarsened slightly,which effectively weakened thetexture intensity and reduced the anisotropy.As a consequence,the yield strength and ultimate tensile strength were significantly improved to(250.2±3.5)MPa and(312±3.7)MPa,respectively,while the elongation was still maintained at a high level of 15.2%.Furthermore,the homogenized microstructure reduced the tendency of localized corrosion and favoredthe development of uniform passivation film.Thus,the degradation rate of WE43 parts was decreased by an order of magnitude.Besides,in-vitro cell experiments proved their favorable biocompatibility. 展开更多
关键词 laser-beam powder bed fusion WE43 alloys heat treatment mechanical performance biodegradation behavior
下载PDF
Biomedical rare-earth magnesium alloy:Current status and future prospects 被引量:1
4
作者 Mingli Yang Cheng Chen +5 位作者 Dongsheng Wang Yinjin Shao Wenhao Zhou Cijun Shuai Youwen Yang Xinghai Ning 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1260-1282,共23页
Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,wit... Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys. 展开更多
关键词 Magnesium alloy Rare earth elements biodegradation behavior Mechanical performance Biological properties
下载PDF
In-vitro corrosion behavior of the cast and extruded biodegradable Mg-Zn-Cu alloys in simulated body fluid(SBF) 被引量:3
5
作者 Mehrab Lotfpour Changiz Dehghanian +5 位作者 Massoud Emamy Ahmad Bahmani Mehdi Malekan Ahmad Saadati Milad Taghizadeh Mohammadreza Shokouhimehr 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2078-2096,共19页
In the present study,a new biodegradable Mg-Zn-Cu magnesium alloy was introduced for biological applications.The microstructural analysis showed the formation of Mg Zn Cu intermetallics for the Mg-2Zn-0.1Cu alloy and ... In the present study,a new biodegradable Mg-Zn-Cu magnesium alloy was introduced for biological applications.The microstructural analysis showed the formation of Mg Zn Cu intermetallics for the Mg-2Zn-0.1Cu alloy and also the Mg(Zn,Cu);compounds for the Mg-2 Zn alloys with higher Cu contents.Moreover,the hot extrusion was applied for the grain refinement and changing the distribution of intermetallics.In vitro immersion tests,electrochemical and corroded surface analyses represented the enhancement of corrosion resistance with 0.1 wt.%Cu addition.Furthermore,the extruded alloys demonstrated more corrosion resistance behavior than that of the cast alloys.By considering the improved tensile properties of Mg-2Zn-0.1Cu alloy,this alloy was regarded as the potential candidate for use as the biodegradable magnesium implant. 展开更多
关键词 Mg alloys Grain refinement Second phases Hot extrusion biodegradation behavior
下载PDF
A homogenous microstructural Mg-based matrix model for orthopedic application with generating uniform and smooth corrosion product layer in Ringer’s solution:Study on biodegradable behavior of Mg-Zn alloys prepared by powder metallurgy as a case 被引量:4
6
作者 Yang Yan Xin Chu +7 位作者 Xier Luo Xuemei Xu Yu Zhang YiLong Dai Ding Li Liangjian Chen Tao Xiao Kun Yu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期225-240,共16页
For high corrosion resistance and extensively modified biodegradable Mg-based alloys and composites for bone implants,a new Mgbased matrix model prepared by powder metallurgy is discussed and developed.In this researc... For high corrosion resistance and extensively modified biodegradable Mg-based alloys and composites for bone implants,a new Mgbased matrix model prepared by powder metallurgy is discussed and developed.In this research,Mg-5 wt.%Zn alloys were selected as a case.And they were impacted by hot extrusion and aging treatments to construct microstructure with different characteristics.Their selfforming corrosion product layer in Ringer’s solution,biodegradable behavior and corrosion mechanism were minutely investigated by in vitro degradation,electrochemical corrosion and cytocompatibility.The results demonstrated the extruded Mg-5 wt.%Zn alloy aged for 96 h showed high corrosion resistance,good biocompatibility for L929 and excellent ability of maintaining sample integrity during the immersion.Significantly,the alloy showed fine-grain microstructure and uniform distributed hundred nano-sized second phases,which promoted the formation of the uniform and smooth corrosion product layer at the beginning of immersion.The corrosion product layer was more stable in chloride containing aqueous solution and could be directly formed and repaired quickly,which effectively protected the matrix from further corrosion.In addition,an ideal model of Mg-based matrix for bone tissue engineering was tried to presume and propose by discussing the causal relationship between microstructure and bio-corrosion process. 展开更多
关键词 Magnesium alloys Powder metallurgy Second phase Corrosion product layer Biodegradable behavior CYTOCOMPATIBILITY
下载PDF
MISCIBILITY AND CRYSTALLIZATION BEHAVIOR OF BIODEGRADABLE BLEND OF POLY(β—HYDROXYBUTYRATE)AND POLY(D,L—LACTIDE)—CO—POLY(ETHYLENE GLYCOL)
7
作者 Xian Mo DENG Lian Lai ZHANG Cheng Dong XIONG Chengdu Institute of Organic Chemistry,Academia Sinica,Chewgdu 610041 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第3期265-268,共4页
Studies on the miscibility of PHB/PELA blends showed that PHB and PELA were miscible in amorphous state.The crystallization behavior of PHB in the blend was strongly de- pendent on the addition of PELA component.
关键词 PELA HYDROXYBUTYRATE)AND POLY LACTIDE MISCIBILITY AND CRYSTALLIZATION behavior OF BIODEGRADABLE BLEND OF POLY PHB D L CO
下载PDF
Systematic in vitro and in vivo study on biodegradable binary Zn-0.2 at%Rare Earth alloys(Zn-RE:Sc,Y,La-Nd,Sm-Lu) 被引量:1
8
作者 Shaokang Du Yunong Shen +4 位作者 Yufeng Zheng Yan Cheng Xiaoxue Xu Dafu Chen Dandan Xia 《Bioactive Materials》 SCIE CSCD 2023年第6期507-523,共17页
Biomedical implants and devices for tissue engineering in clinics,mainly made of polymers and stiff metallic materials,require possibly secondary surgery or life-long medicine.Biodegradable metals for biomedical impla... Biomedical implants and devices for tissue engineering in clinics,mainly made of polymers and stiff metallic materials,require possibly secondary surgery or life-long medicine.Biodegradable metals for biomedical implants and devices exhibit huge potential to improve the prognosis of patients.In this work,we developed a new type of biodegradable binary zinc(Zn)alloys with 16 rare earth elements(REEs)including Sc,Y,La to Nd,and Sm to Lu,respectively.The effects of REEs on the alloy microstructure,mechanical properties,corrosion behavior and in vitro and in vivo biocompatibility of Zn were systematically investigated using pure Zn as control.All Zn-RE alloys generally exhibited improved mechanical properties,and biocompatibilities compared to pure Zn,especially the tensile strength and ductility of Zn-RE alloys were dramatically enhanced.Among the Zn-RE alloys,different REEs presented enhancement effects at varied extent.Y,Ho and Lu were the three elements displaying greatest improvements in majority of alloys properties,while Eu,Gd and Dy exhibited least improvement.Furthermore,the Zn-RE alloys were comparable with other Zn alloys and also exhibited superior properties to Mg-RE alloys.The in vivo experiment using Zn-La,Zn-Ce,and Zn-Nd alloys as tibia bone implants in rabbit demonstrated the excellent tissue biocompatibility and much more obvious osseointegration than the pure Zn control group.This work presented the significant potential of the developed Zn-RE binary alloys as novel degradable metal for biomedical implants and devices. 展开更多
关键词 Biodegradable metals Zn-Rare Earth alloys Mechanical property biodegradation behavior BIOCOMPATIBILITY
原文传递
Effects of ECAP Extrusion on the Microstructure, Mechanical Properties and Biodegradability of Mg–2Zn–xGd–0.5Zr Alloys 被引量:4
9
作者 Jun-Xiu Chen Xiang-Ying Zhu +2 位作者 Li-Li Tan Ke Yang Xu-Ping Su 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第2期205-216,共12页
Effects of equal channel angular pressing(ECAP)extrusion on the microstructure,mechanical properties and biodegradability of Mg–2Zn–xGd–0.5Zr(x=0,0.5,1,2 wt%)alloys were studied in this work.Microstructure analysis... Effects of equal channel angular pressing(ECAP)extrusion on the microstructure,mechanical properties and biodegradability of Mg–2Zn–xGd–0.5Zr(x=0,0.5,1,2 wt%)alloys were studied in this work.Microstructure analysis,tensile test at ambient temperature,immersion test and electrochemical test in Hank’s solution were carried out.The results showed that Gd could further enhance the grain refinement during the ECAP extrusion.Both Gd addition and ECAP extrusion could improve the mechanical properties of the alloys,and the extrusion played the dominant role.Minor addition of Gd(0.5–1 wt%)could obviously enhance the corrosion resistance of the alloys.To some extent,ECAP extrusion improved the corrosion resistance of the alloys due to the change of second phases distribution and the refinement of grains.Further increase in extrusion pass was detrimental to the improvement of the corrosion resistance as a result of increment of the grain boundaries. 展开更多
关键词 Mg alloys Gd addition ECAP extrusion pass Mechanical property Biodegradable behavior
原文传递
In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals 被引量:28
10
作者 C.Wang H.T.Yang +1 位作者 X.Li Y.F.Zheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期909-918,共10页
In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility a... In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility and hemocompatibility of Zn alloys were studied with pure Zn as control, Commercial Zn alloys demonstrated increased strength and superb elongation compared with pure Zn. Accelerated corrosion rates and uniform corrosion morphologies were observed in terms of commercial Zn alloys due to galvanic effects between Zn matrix and α-Al phases. 100% extracts of ZA4-1 and ZA6-1 alloys showed mild cytotoxicity while 50% extracts of all samples displayed good biocompatibility. Retardant cell cycle and inhibited stress fibers expression were observed induced by high concentration of Zn^2+ releasing during corrosion. The hemolysis ratios of Zn alloys were lower than 1% while the adhered platelets showed slightly activated morphologies. In general, commercial Zn alloys possess promising mechanical properties, appropriate corrosion rates, significantly improved biocompatibility and good hemocompatibility in comparison to pure Zn. It is feasible to develop biodegradable metals based on commercial Zn alloys. 展开更多
关键词 Commercial Zn alloys Biodegradable metals Mechanical properties Corrosion behaviors Cytotoxicity Hemocompatibility
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部