The microstructure evolution and mechanical properties of biodegradable Mg-3Sn-1Zn-0.5Mn alloys were investigated by the optical microscopy, X-ray diffractometer and a universal material testing machine. The corrosion...The microstructure evolution and mechanical properties of biodegradable Mg-3Sn-1Zn-0.5Mn alloys were investigated by the optical microscopy, X-ray diffractometer and a universal material testing machine. The corrosion and degradation behaviors were studied by potentiodynamic polarization method and immersion test in a simulated body fluid (SBF). It was found that the as-extruded Mg-3Sn-1Zn-0.5Mn alloy has the fine equiaxed grains which underwent complete dynamic recrystallization during the hot extrusion process, with the second phase particles of Mg2Sn precipitated on the grain boundaries and inside the grains. The tensile strength and elongation of as-extruded Mg-3Sn-1Zn-0.5Mn alloys were 244 ± 3.7 MPa and 19.3% ± 1.7%, respectively. The potentiodynamic polarization curves in SBF solution indicated the better corrosion resistance of the as-extruded Mg-3Sn-1Zn-0.5Mn alloy in the SBF solution. Immersion test in the SBF solution for 720 h revealed that the corrosion rate of as-extruded Mg-3Sn-1Zn-0.5Mn alloy was nearly 4±0.33 ram/year. The hemolysis rate of as-extruded Mg-3Sn-1Zn-0.5Mn alloy was lower than the safe value of 5% according to ISO 10993-4. As-extruded Mg-3Sn- 1Zn-0.5Mn alloy showed good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the rabbit, and no abnormalities were found after short-term implantation. It was revealed that the as-extruded Mg-3Sn-1Zn-0.5Mn alloy is a promising material for biodegradable implants, which possesses an interesting combination of preferred mechanical properties, better corrosion resistance and biocompatibility.展开更多
Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the ...Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the presence of surfactant. The intercalated structure and high aspect ratio of OLDH were verified by X-ray diffraction(XRD) and scanning electron microscopy(SEM). A series of poly(propylene carbonate)(PPC)/OLDH composite films with different contents of OLDH were prepared via a melt-blending method. Their cross section morphologies, gas barrier properties and tensile strength were investigated as a function of OLDH contents. SEM results show that OLDH platelets are well dispersed within the composites and oriented parallel to the composite sheet plane. The gas barrier properties and tensile strength are obviously enhanced upon the incorporation of OLDH. Particularly, PPC/2%OLDH film exhibits the best barrier properties among all the composite films. Compared with pure PPC, the oxygen permeability coefficient(OP) and water vapor permeability coefficient(WVP) is reduced by 54% and 17% respectively with 2% OLDH addition. Furthermore, the tensile strength of PPC/2%OLDH is 83% higher than that of pure PPC with only small lose of elongation at break. Therefore, PPC/OLDH composite films show great potential application in packaging materials due to its biodegradable properties, superior oxygen and moisture barrier characteristics.展开更多
Inspired by the photoprotection, radical scavenging of melanin together with versatile adhesive ability of mussel proteins, polydopamine(PDA) nanoparticles were successfully prepared and incorporated into environmen...Inspired by the photoprotection, radical scavenging of melanin together with versatile adhesive ability of mussel proteins, polydopamine(PDA) nanoparticles were successfully prepared and incorporated into environmentally friendly polymer, poly(propylene carbonate)(PPC) via solvent blending. The prepared composites exhibited excellent thermal stability in air and nitrogen atmosphere and extraordinary mechanical properties. The composites displayed eminent increase of temperature at 5% weight loss(T5%) by 30-100 K with 0.3 wt%-2.0 wt% loadings, meanwhile, the tensile strength and Young's modulus were significantly improved from 11.5 MPa and 553.7 MPa to 40.5 MPa and 2411.2 MPa, respectively. The kinetic calculation indicated that improvement of T5% is presumably derived from suppressing chain-end unzipping. The glass transition temperature(Tg) of the PPC/PDA composites increased by 8-10 K. This is probably due to hydrogen bonding interaction since the abundant proton donors along PDA chains would interact with proton acceptors like C = O and C―O―C in PPC which would cause restriction of segmental motion of PPC chains.展开更多
In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility a...In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility and hemocompatibility of Zn alloys were studied with pure Zn as control, Commercial Zn alloys demonstrated increased strength and superb elongation compared with pure Zn. Accelerated corrosion rates and uniform corrosion morphologies were observed in terms of commercial Zn alloys due to galvanic effects between Zn matrix and α-Al phases. 100% extracts of ZA4-1 and ZA6-1 alloys showed mild cytotoxicity while 50% extracts of all samples displayed good biocompatibility. Retardant cell cycle and inhibited stress fibers expression were observed induced by high concentration of Zn^2+ releasing during corrosion. The hemolysis ratios of Zn alloys were lower than 1% while the adhered platelets showed slightly activated morphologies. In general, commercial Zn alloys possess promising mechanical properties, appropriate corrosion rates, significantly improved biocompatibility and good hemocompatibility in comparison to pure Zn. It is feasible to develop biodegradable metals based on commercial Zn alloys.展开更多
In recent years, zinc based alloys as a new biodegradable metal material aroused intensive interests. However, the processing of Zn alloys micro-tubes (named slender-diameter and thin-walled tubes) is very difficult...In recent years, zinc based alloys as a new biodegradable metal material aroused intensive interests. However, the processing of Zn alloys micro-tubes (named slender-diameter and thin-walled tubes) is very difficult due to their HCP crystal structure and unfavorable mechanical properties. This study aimed to develop a novel technique to produce micro-tube of Zn alloy with good performance for biodegrad- able vascular stent application. In the present work, a processing method that combined drilling, cold rolling and optimized drawing was proposed to produce the novel Zn-5Mg-1Fe (wt%) alloy micro- tubes. The micro-tube with outer diameter of 2.5 mm and thickness of 130 μm was fabricated by this method and its dimension errors are within 10 μm. The micro-tube exhibits a fine and homogeneous microstructure, and the ultimate tensile strength and ductility are more than 220 MPa and 20% respectively. In addition, the micro-tube and stents of Zn alloy exhibit superior in vitro corrosion and expansion performance. It could be concluded that the novel Zn alloy micro-tube fabricated by above method might be a promising candidate material for biodegradable stent.展开更多
基金supported by the National Natural Science Fund for Young Scientists of China(Grant No.51301049)the Fundamental Research Funds for the Central Universities(Grant No.HEUCF201310024)+1 种基金the National Natural Science Foundation of China(Grant No.81271676)the National High Technology Research and Development Program of China(“863 Program”,Grant No.2009AA03Z423)
文摘The microstructure evolution and mechanical properties of biodegradable Mg-3Sn-1Zn-0.5Mn alloys were investigated by the optical microscopy, X-ray diffractometer and a universal material testing machine. The corrosion and degradation behaviors were studied by potentiodynamic polarization method and immersion test in a simulated body fluid (SBF). It was found that the as-extruded Mg-3Sn-1Zn-0.5Mn alloy has the fine equiaxed grains which underwent complete dynamic recrystallization during the hot extrusion process, with the second phase particles of Mg2Sn precipitated on the grain boundaries and inside the grains. The tensile strength and elongation of as-extruded Mg-3Sn-1Zn-0.5Mn alloys were 244 ± 3.7 MPa and 19.3% ± 1.7%, respectively. The potentiodynamic polarization curves in SBF solution indicated the better corrosion resistance of the as-extruded Mg-3Sn-1Zn-0.5Mn alloy in the SBF solution. Immersion test in the SBF solution for 720 h revealed that the corrosion rate of as-extruded Mg-3Sn-1Zn-0.5Mn alloy was nearly 4±0.33 ram/year. The hemolysis rate of as-extruded Mg-3Sn-1Zn-0.5Mn alloy was lower than the safe value of 5% according to ISO 10993-4. As-extruded Mg-3Sn- 1Zn-0.5Mn alloy showed good biocompatibility after being implanted into the dorsal muscle and the femoral shaft of the rabbit, and no abnormalities were found after short-term implantation. It was revealed that the as-extruded Mg-3Sn-1Zn-0.5Mn alloy is a promising material for biodegradable implants, which possesses an interesting combination of preferred mechanical properties, better corrosion resistance and biocompatibility.
基金financially supported by the National Natural Science Foundation of China(No.21376276)the Specialfunded Program on National Key Scientific Instruments and Equipment Development of China(No.2012YQ230043)+1 种基金Guangdong Province Sci&Tech Bureau(Key Strategic Project No.2008A080800024)the Fundamental Research Funds for the Central Universities
文摘Relatively well crystallized and high aspect ratio Mg-Al layered double hydroxides(LDHs) were prepared by coprecipitation process in aqueous solution and further rehydrated to an organic modified LDH(OLDH) in the presence of surfactant. The intercalated structure and high aspect ratio of OLDH were verified by X-ray diffraction(XRD) and scanning electron microscopy(SEM). A series of poly(propylene carbonate)(PPC)/OLDH composite films with different contents of OLDH were prepared via a melt-blending method. Their cross section morphologies, gas barrier properties and tensile strength were investigated as a function of OLDH contents. SEM results show that OLDH platelets are well dispersed within the composites and oriented parallel to the composite sheet plane. The gas barrier properties and tensile strength are obviously enhanced upon the incorporation of OLDH. Particularly, PPC/2%OLDH film exhibits the best barrier properties among all the composite films. Compared with pure PPC, the oxygen permeability coefficient(OP) and water vapor permeability coefficient(WVP) is reduced by 54% and 17% respectively with 2% OLDH addition. Furthermore, the tensile strength of PPC/2%OLDH is 83% higher than that of pure PPC with only small lose of elongation at break. Therefore, PPC/OLDH composite films show great potential application in packaging materials due to its biodegradable properties, superior oxygen and moisture barrier characteristics.
基金financially supported by the National Natural Science Foundation of China(Nos.51173112 and 21274095)
文摘Inspired by the photoprotection, radical scavenging of melanin together with versatile adhesive ability of mussel proteins, polydopamine(PDA) nanoparticles were successfully prepared and incorporated into environmentally friendly polymer, poly(propylene carbonate)(PPC) via solvent blending. The prepared composites exhibited excellent thermal stability in air and nitrogen atmosphere and extraordinary mechanical properties. The composites displayed eminent increase of temperature at 5% weight loss(T5%) by 30-100 K with 0.3 wt%-2.0 wt% loadings, meanwhile, the tensile strength and Young's modulus were significantly improved from 11.5 MPa and 553.7 MPa to 40.5 MPa and 2411.2 MPa, respectively. The kinetic calculation indicated that improvement of T5% is presumably derived from suppressing chain-end unzipping. The glass transition temperature(Tg) of the PPC/PDA composites increased by 8-10 K. This is probably due to hydrogen bonding interaction since the abundant proton donors along PDA chains would interact with proton acceptors like C = O and C―O―C in PPC which would cause restriction of segmental motion of PPC chains.
基金supported by the National Basic Research Program of China (973 Program) (Grant Nos. 2012CB619102 and 012CB619100)National Science Fund for Distinguished Young Scholars (Grant No. 51225101)+3 种基金National Natural Science Foundation of China (Grant Nos. 51431002 and 31170909)the NSFC/RGC Joint Research Scheme (Grant No. 51361165101)State Key Laboratory for Mechanical Behavior of Materials (Grant No. 20141615)Beijing Municipal Science and Technology Project (No. Z141100002814008)
文摘In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility and hemocompatibility of Zn alloys were studied with pure Zn as control, Commercial Zn alloys demonstrated increased strength and superb elongation compared with pure Zn. Accelerated corrosion rates and uniform corrosion morphologies were observed in terms of commercial Zn alloys due to galvanic effects between Zn matrix and α-Al phases. 100% extracts of ZA4-1 and ZA6-1 alloys showed mild cytotoxicity while 50% extracts of all samples displayed good biocompatibility. Retardant cell cycle and inhibited stress fibers expression were observed induced by high concentration of Zn^2+ releasing during corrosion. The hemolysis ratios of Zn alloys were lower than 1% while the adhered platelets showed slightly activated morphologies. In general, commercial Zn alloys possess promising mechanical properties, appropriate corrosion rates, significantly improved biocompatibility and good hemocompatibility in comparison to pure Zn. It is feasible to develop biodegradable metals based on commercial Zn alloys.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2012CB619102)the National Science Foundation of China(Grant No.31400821)the innovation fund of Western Metal Materials(Grant No.XBCL-3-14)
文摘In recent years, zinc based alloys as a new biodegradable metal material aroused intensive interests. However, the processing of Zn alloys micro-tubes (named slender-diameter and thin-walled tubes) is very difficult due to their HCP crystal structure and unfavorable mechanical properties. This study aimed to develop a novel technique to produce micro-tube of Zn alloy with good performance for biodegrad- able vascular stent application. In the present work, a processing method that combined drilling, cold rolling and optimized drawing was proposed to produce the novel Zn-5Mg-1Fe (wt%) alloy micro- tubes. The micro-tube with outer diameter of 2.5 mm and thickness of 130 μm was fabricated by this method and its dimension errors are within 10 μm. The micro-tube exhibits a fine and homogeneous microstructure, and the ultimate tensile strength and ductility are more than 220 MPa and 20% respectively. In addition, the micro-tube and stents of Zn alloy exhibit superior in vitro corrosion and expansion performance. It could be concluded that the novel Zn alloy micro-tube fabricated by above method might be a promising candidate material for biodegradable stent.