期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Handling Multiple Objectives with Biogeography-based Optimization 被引量:3
1
作者 Hai-Ping Ma Xie-Yong Ruan Zhang-Xin Pan 《International Journal of Automation and computing》 EI 2012年第1期30-36,共7页
Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective op... Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do. 展开更多
关键词 Multi-objective optimization biogeography-based optimization (bbo evolutionary algorithms Pareto optimal nondominated sorting.
下载PDF
Parkinson’s Disease Detection Using Biogeography-Based Optimization 被引量:1
2
作者 Somayeh Hessam Shaghayegh Vahdat +4 位作者 Irvan Masoudi Asl Mahnaz Kazemipoor Atefeh Aghaei Shahaboddin Shamshirband Timon Rabczuk 《Computers, Materials & Continua》 SCIE EI 2019年第7期11-26,共16页
In recent years,Parkinson’s Disease(PD)as a progressive syndrome of the nervous system has become highly prevalent worldwide.In this study,a novel hybrid technique established by integrating a Multi-layer Perceptron ... In recent years,Parkinson’s Disease(PD)as a progressive syndrome of the nervous system has become highly prevalent worldwide.In this study,a novel hybrid technique established by integrating a Multi-layer Perceptron Neural Network(MLP)with the Biogeography-based Optimization(BBO)to classify PD based on a series of biomedical voice measurements.BBO is employed to determine the optimal MLP parameters and boost prediction accuracy.The inputs comprised of 22 biomedical voice measurements.The proposed approach detects two PD statuses:0-disease status and 1-good control status.The performance of proposed methods compared with PSO,GA,ACO and ES method.The outcomes affirm that the MLP-BBO model exhibits higher precision and suitability for PD detection.The proposed diagnosis system as a type of speech algorithm detects early Parkinson’s symptoms,and consequently,it served as a promising new robust tool with excellent PD diagnosis performance. 展开更多
关键词 Parkinson’s disease(PD) biomedical voice measurements multi-layer perceptron neural network(MLP) biogeography-based optimization(bbo) medical diagnosis bio-inspired computation
下载PDF
Solution-Distance-Based Migration Rate Calculating for Biogeography-Based Optimization 被引量:1
3
作者 郭为安 汪镭 +1 位作者 陈明 吴启迪 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期699-702,共4页
Biogeography-based optimization(BBO),a natureinspired optimization algorithm(NIOA),has exhibited a huge potential in optimization.In BBO,the good solutions have a large probability to share information with poor solut... Biogeography-based optimization(BBO),a natureinspired optimization algorithm(NIOA),has exhibited a huge potential in optimization.In BBO,the good solutions have a large probability to share information with poor solutions,while poor solutions have a large probability to accept the information from others.In original BBO,calculating for migration rates is based on solutions' ranking.From the ranking,it can be known that which solution is better and which one is worse.Based on the ranking,the migration rates are calculated to help BBO select good features and poor features.The differences among results can not be reflected,which will result in an improper migration rate calculating.Two new ways are proposed to calculate migration rates,which is helpful for BBO to obtain a suitable assignment of migration rates and furthermore affect algorithms ' performance.The ranking of solutions is no longer integers,but decimals.By employing the strategies,the ranking can not only reflect the orders of solutions,but also can reflect more details about solutions' distances.A set of benchmarks,which include 14 functions,is employed to compare the proposed approaches with other algorithms.The results demonstrate that the proposed approaches are feasible and effective to enhance BBO's performance. 展开更多
关键词 migration ranking calculating Distance assignment helpful details furthermore accept integers
下载PDF
Optimization of Cognitive Radio System Using Enhanced Firefly Algorithm
4
作者 Nitin Mittal Rohit Salgotra +3 位作者 Abhishek Sharma Sandeep Kaur SSAskar Mohamed Abouhawwash 《Intelligent Automation & Soft Computing》 SCIE 2023年第9期3159-3177,共19页
The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fi... The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results. 展开更多
关键词 Firefly algorithm cognitive radio bit error rate genetic algorithm simulated annealing biogeography-based optimization
下载PDF
Two-dimensional cross entropy multi-threshold image segmentation based on improved BBO algorithm 被引量:2
5
作者 LI Wei HU Xiao-hui WANG Hong-chuang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期42-49,共8页
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe... In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm. 展开更多
关键词 two-dimensional cross entropy biogeography-based optimization(bbo)algorithm multi-threshold image segmentation
下载PDF
Hybrid Optimization Based PID Controller Design for Unstable System 被引量:1
6
作者 Saranya Rajeshwaran C.Agees Kumar Kanthaswamy Ganapathy 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1611-1625,共15页
PID controllers play an important function in determining tuning para-meters in any process sector to deliver optimal and resilient performance for non-linear,stable and unstable processes.The effectiveness of the pre... PID controllers play an important function in determining tuning para-meters in any process sector to deliver optimal and resilient performance for non-linear,stable and unstable processes.The effectiveness of the presented hybrid metaheuristic algorithms for a class of time-delayed unstable systems is described in this study when applicable to the problems of PID controller and Smith PID controller.The Direct Multi Search(DMS)algorithm is utilised in this research to combine the local search ability of global heuristic algorithms to tune a PID controller for a time-delayed unstable process model.A Metaheuristics Algorithm such as,SA(Simulated Annealing),MBBO(Modified Biogeography Based Opti-mization),BBO(Biogeography Based Optimization),PBIL(Population Based Incremental Learning),ES(Evolution Strategy),StudGA(Stud Genetic Algo-rithms),PSO(Particle Swarm Optimization),StudGA(Stud Genetic Algorithms),ES(Evolution Strategy),PSO(Particle Swarm Optimization)and ACO(Ant Col-ony Optimization)are used to tune the PID controller and Smith predictor design.The effectiveness of the suggested algorithms DMS-SA,DMS-BBO,DMS-MBBO,DMS-PBIL,DMS-StudGA,DMS-ES,DMS-ACO,and DMS-PSO for a class of dead-time structures employing PID controller and Smith predictor design controllers is illustrated using unit step set point response.When compared to other optimizations,the suggested hybrid metaheuristics approach improves the time response analysis when extended to the problem of smith predictor and PID controller designed tuning. 展开更多
关键词 Direct multi search simulated annealing biogeography-based optimization stud genetic algorithms particle swarm optimization SmithPID controller
下载PDF
Greedy particle swarm and biogeography-based optimization algorithm 被引量:1
7
作者 Jehad Ababneh 《International Journal of Intelligent Computing and Cybernetics》 EI 2015年第1期28-49,共22页
Purpose–The purpose of this paper is to propose an algorithm that combines the particle swarm optimization(PSO)with the biogeography-based optimization(BBO)algorithm.Design/methodology/approach–The BBO and the PSO a... Purpose–The purpose of this paper is to propose an algorithm that combines the particle swarm optimization(PSO)with the biogeography-based optimization(BBO)algorithm.Design/methodology/approach–The BBO and the PSO algorithms are jointly used in to order to combine the advantages of both algorithms.The efficiency of the proposed algorithm is tested using some selected standard benchmark functions.The performance of the proposed algorithm is compared with that of the differential evolutionary(DE),genetic algorithm(GA),PSO,BBO,blended BBO and hybrid BBO-DE algorithms.Findings–Experimental results indicate that the proposed algorithm outperforms the BBO,PSO,DE,GA,and the blended BBO algorithms and has comparable performance to that of the hybrid BBO-DE algorithm.However,the proposed algorithm is simpler than the BBO-DE algorithm since the PSO does not have complex operations such as mutation and crossover used in the DE algorithm.Originality/value–The proposed algorithm is a generic algorithm that can be used to efficiently solve optimization problems similar to that solved using other popular evolutionary algorithms but with better performance. 展开更多
关键词 optimization Particle swarm optimization Evolutionary algorithm biogeography-based optimization
原文传递
基于PSO-BBO混合优化算法的动态经济调度问题 被引量:15
8
作者 陈珍 胡志坚 《电力系统保护与控制》 EI CSCD 北大核心 2014年第18期44-49,共6页
动态经济调度(Dynamic Economic Dispatch,DED)问题是电力系统运行与控制领域比较经典的多变量、非线性、强约束优化问题。为解决该问题,提出了将粒子群优化算法(Particle Swarm Optimization,PSO)和基本生物地理学优化算法(Biogeograph... 动态经济调度(Dynamic Economic Dispatch,DED)问题是电力系统运行与控制领域比较经典的多变量、非线性、强约束优化问题。为解决该问题,提出了将粒子群优化算法(Particle Swarm Optimization,PSO)和基本生物地理学优化算法(Biogeography-Based Optimization,BBO)相结合的改进生物地理学优化算法,并将该改进方法应用于一天24时段10机39节点标准算例。在考虑网损与不考虑网损两种情况下分别进行仿真分析,并将仿真结果与PSO和基本BBO算法以及参考文献中提出的六种智能算法进行对比,验证了该改进算法的有效性及在寻优能力上的提高。 展开更多
关键词 动态经济调度 生物地理学优化算法 PSO-bbo混合优化算法 阀点效应 约束处理
下载PDF
采用改进BBO算法的并网型微电网电源优化配置 被引量:6
9
作者 吕智林 王先齐 谭颖 《电力系统及其自动化学报》 CSCD 北大核心 2017年第6期35-44,共10页
针对并网型微电网的分布式电源优化配置问题,以年综合经济投资最小为目标,计及设备年等值投资成本、运行维护成本、燃料成本、环境折算成本以及年购电成本和余电出售收益,考虑分布式电源出力约束、系统自平衡度和冗余度等约束,建立了并... 针对并网型微电网的分布式电源优化配置问题,以年综合经济投资最小为目标,计及设备年等值投资成本、运行维护成本、燃料成本、环境折算成本以及年购电成本和余电出售收益,考虑分布式电源出力约束、系统自平衡度和冗余度等约束,建立了并网型微电网优化配置模型;同时提出一种基于余弦迁移模型、变尺度分段Lo-gistic混沌和高斯变异策略改进的生物地理学优化(BBO)算法用于模型求解。仿真结果验证了所提模型的合理性,并表明改进的BBO算法具有良好的收敛速度和收敛精度。 展开更多
关键词 分布式电源优化配置 并网型微电网 自平衡度 生物地理学优化算法 迁移模型 变异策略
下载PDF
基于BBO优化BP神经网络的乳腺癌诊断 被引量:1
10
作者 李卉 《山西电子技术》 2018年第5期35-36,44,共3页
乳腺癌已成为世界上妇女发病率最高的癌症。医学研究发现,乳腺肿瘤病灶组织的细胞核显微图像与正常组织的细胞核显微图像不同,但是用一般的图像处理方法很难对其进行区分。因此,本文提出用生物地理学优化算法(BBO)优化BP神经网络对乳腺... 乳腺癌已成为世界上妇女发病率最高的癌症。医学研究发现,乳腺肿瘤病灶组织的细胞核显微图像与正常组织的细胞核显微图像不同,但是用一般的图像处理方法很难对其进行区分。因此,本文提出用生物地理学优化算法(BBO)优化BP神经网络对乳腺癌进行诊断,将乳腺肿瘤病灶组织的细胞核显微图像的10个量化特征作为网络的输入,良性乳腺肿瘤和恶性乳腺肿瘤作为网络的输出。用训练集数据对设计的BBOBP神经网络进行训练,然后对测试集数据进行测试并对测试结果进行分析。结果表明BBOBP有很好的分类性能,能对乳腺癌进行有效的诊断,且误诊率较低。 展开更多
关键词 乳腺癌 BP神经网络 生物地理学优化算法(bbo)
下载PDF
一种改进的BBO算法及在热工PID优化中的应用 被引量:2
11
作者 薛虹 韩璞 《华北电力大学学报(自然科学版)》 CAS 北大核心 2016年第1期81-85,共5页
为了提高BBO算法在热工系统PID控制器参数优化方面的性能,改善其寻优能力,给出一种改进的生物地理学优化算法。在原有的迁移操作的基础上引入粒子群优化算法的寻优策略,使整个迁移过程具备一定的方向性,同时应用淘汰策略剔除迁移突变后... 为了提高BBO算法在热工系统PID控制器参数优化方面的性能,改善其寻优能力,给出一种改进的生物地理学优化算法。在原有的迁移操作的基础上引入粒子群优化算法的寻优策略,使整个迁移过程具备一定的方向性,同时应用淘汰策略剔除迁移突变后较差的参数。一方面方向性的迁移及淘汰机制保证其快速的寻优收敛特性,另一方面突变机制保证广域搜索的全局特性,避免陷入局部极值。将其与原BBO算法进行比较,仿真结果表明改进的BBO算法在收敛速度和收敛精度上较标准BBO算法有较大提高,应用于PID控制器参数优化是可行的。 展开更多
关键词 改进bbo算法 PID参数优化 仿真研究
下载PDF
V2G模式下基于SaDE-BBO算法的有源配电网优化 被引量:4
12
作者 李伟豪 杨伟 +1 位作者 左逸凡 李娇 《电力工程技术》 北大核心 2023年第4期41-49,共9页
为了解决大规模电动汽车入网难以实现个体调度以及集群调度存在“维数灾”的问题,建立基于车辆到电网(vehicle-to-grid,V2G)模式的有源配电网分层分区优化运行模型。其中,上层优化模型对电动汽车集控中心(electric vehicle agent,EVA)... 为了解决大规模电动汽车入网难以实现个体调度以及集群调度存在“维数灾”的问题,建立基于车辆到电网(vehicle-to-grid,V2G)模式的有源配电网分层分区优化运行模型。其中,上层优化模型对电动汽车集控中心(electric vehicle agent,EVA)进行调度,优化各区域EVA的充放电功率并作为下层优化模型的输入;下层优化模型调整各调压方式。在优化算法方面,提出一种自适应差分进化-生物地理学优化(self-adaptive differential evolution-biogeography-based optimization,SaDE-BBO)算法,并在改进的IEEE 33节点配电系统中进行仿真分析。结果表明:在不同充电控制策略下,V2G模式与各调压方式的协调互动在降低各区域EVA运营成本、平抑负荷波动以及保证有源配电网的安全和经济运行方面优势显著,与其他优化算法相比,SaDE-BBO算法具有更优质的解和更好的收敛性。 展开更多
关键词 车辆到电网(V2G) 分布式电源 有源配电网 分层分区 优化运行 自适应差分进化-生物地理学优化(SaDE-bbo)算法
下载PDF
BIRI:支持信息中心范型的BBO启发式MSN路由算法 被引量:1
13
作者 涂盼鹏 王兴伟 +1 位作者 李婕 黄敏 《计算机研究与发展》 EI CSCD 北大核心 2019年第9期1918-1926,共9页
智能移动终端的普及大大推动了移动社交网络(mobile social networks, MSNs)的发展.人类作为终端设备的载体具备频繁的移动性,导致网络拓扑的动态变化,并给MSN路由带来了时延长、投递率低、开销大等诸多难题.为提升路由效率,基于信息中... 智能移动终端的普及大大推动了移动社交网络(mobile social networks, MSNs)的发展.人类作为终端设备的载体具备频繁的移动性,导致网络拓扑的动态变化,并给MSN路由带来了时延长、投递率低、开销大等诸多难题.为提升路由效率,基于信息中心网络(information centric networking, ICN)以内容为中心的思想以及生物地理优化(biogeography-based optimization, BBO)算法,设计了一种高效的支持信息中心范型的BBO启发式MSN路由算法(BBO-inspired MSN routing algorithm with information-centric paradigm support, BIRI).首先,该机制基于重定义的社交度量——社会关系强度和中心度——使用BBO算法进行社区划分.其次,设计了内容聚集、数据缓存以及桥节点选取策略,支持高效的内容检索和访问.基于上述策略,提出了优化的社区间和社区内路由过程,缓解终端移动性对数据传输带来的影响.在机会网络环境(opportunistic network environment, ONE)中,仿真实现BIRI机制,并且与其他3种MSN路由机制从投递率、平均时延、网络开销比率3个指标进行性能对比与分析,实验结果表明BIRI是一种可行且高效的MSN路由机制. 展开更多
关键词 移动社交网络 信息中心网络 生物地理优化 社区发现 社交度量 路由算法
下载PDF
基于改进BBO算法的FCM图像分割方法 被引量:1
14
作者 李薇 胡晓辉 王鸿闯 《传感器与微系统》 CSCD 2018年第10期57-59,共3页
针对模糊C均值(FCM)算法进行图像分割时初始聚类中心选取困难的问题,提出了一种基于改进的生物地理学(BBO)优化算法的FCM图像分割方法,提高最优解的全局搜索性能。不同于传统的BBO算法,改进的BBO算法使用新的迁移策略和变异算子。为了... 针对模糊C均值(FCM)算法进行图像分割时初始聚类中心选取困难的问题,提出了一种基于改进的生物地理学(BBO)优化算法的FCM图像分割方法,提高最优解的全局搜索性能。不同于传统的BBO算法,改进的BBO算法使用新的迁移策略和变异算子。为了评估所提出的方法,同时进行了基于遗传算法以及标准BBO算法的FCM图像分割实验,实验结果表明:相对于其他2种算法,提出的方法具有良好的收敛稳定性,可以有效缩短迭代时间,提高分割准确性。 展开更多
关键词 图像分割 生物地理学优化算法 变异算子 模糊C均值
下载PDF
A hybrid biogeography-based optimization method for the inverse kinematics problem of an 8-DOF redundant humanoid manipulator 被引量:3
15
作者 Zi-wu REN Zhen-hua WANG Li-ning SUN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第7期607-616,共10页
The redundant humanoid manipulator has characteristics of multiple degrees of freedom and complex joint structure, and it is not easy to obtain its inverse kinematics solution. The inverse kinematics problem of a huma... The redundant humanoid manipulator has characteristics of multiple degrees of freedom and complex joint structure, and it is not easy to obtain its inverse kinematics solution. The inverse kinematics problem of a humanoid manipulator can be formulated as an equivalent minimization problem, and thus it can be solved using some numerical optimization methods. Biogeography-based optimization (BBO) is a new biogeography inspired optimization algorithm, and it can be adopted to solve the inverse kinematics problem of a humanoid manipulator. The standard BBO algorithm that uses traditional migration and mutation operators suffers from slow convergence and prematurity. A hybrid biogeography-based optimization (HBBO) algorithm, which is based on BBO and differential evolution (DE), is presented. In this hybrid algorithm, new habitats in the ecosystem are produced through a hybrid migration operator, that is, the BBO migration strategy and Did/best/I/bin differential strategy, to alleviate slow convergence at the later evolution stage of the algorithm. In addition, a Gaussian mutation operator is adopted to enhance the exploration ability and improve the diversity of the population. Based on these, an 8-DOF (degree of freedom) redundant humanoid manipulator is employed as an example. The end-effector error (position and orientation) and the 'away limitation level' value of the 8-DOF humanoid manipulator constitute the fitness function of HBBO. The proposed HBBO algorithm has been used to solve the inverse kinematics problem of the 8-DOF redundant humanoid manipulator. Numerical simulation results demonstrate the effectiveness of this method. 展开更多
关键词 Inverse kinematics problem 8-DOF humanoid manipulator biogeography-based optimization (bbo Differential evolution (DE)
原文传递
基于改进BBO算法的火力分配方案优化 被引量:7
16
作者 罗锐涵 李顺民 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2020年第6期897-902,共6页
将生物地理学优化(Biogeography-based optimization,BBO)算法应用于火力打击目标分配方案的优化中,对BBO算法增加三维变异操作,优化算法的收敛精度。采用改进的Tdv-BBO算法(Three-dimensional variation biogeography-based optimizati... 将生物地理学优化(Biogeography-based optimization,BBO)算法应用于火力打击目标分配方案的优化中,对BBO算法增加三维变异操作,优化算法的收敛精度。采用改进的Tdv-BBO算法(Three-dimensional variation biogeography-based optimization,Tdv-BBO)来解决火力打击中的目标分配问题,对敌方想定实例进行了目标-火力数量组合优化。算例验证结果表明:改进的BBO算法增强了全局搜索能力,可为海上联合打击的目标分配提供一种有效的方法。 展开更多
关键词 bbo优化算法 火力分配方案 变异算子 组合优化 全局搜索能力
下载PDF
Three Dimensional Optimum Node Localization in Dynamic Wireless Sensor Networks 被引量:1
17
作者 Gagandeep Singh Walia Parulpreet Singh +5 位作者 Manwinder Singh Mohamed Abouhawwash Hyung Ju Park Byeong-Gwon Kang Shubham Mahajan Amit Kant Pandit 《Computers, Materials & Continua》 SCIE EI 2022年第1期305-321,共17页
Location information plays an important role in most of the applications in Wireless Sensor Network(WSN).Recently,many localization techniques have been proposed,while most of these deals with two Dimensional applicat... Location information plays an important role in most of the applications in Wireless Sensor Network(WSN).Recently,many localization techniques have been proposed,while most of these deals with two Dimensional applications.Whereas,in Three Dimensional applications the task is complex and there are large variations in the altitude levels.In these 3D environments,the sensors are placed in mountains for tracking and deployed in air for monitoring pollution level.For such applications,2D localization models are not reliable.Due to this,the design of 3D localization systems in WSNs faces new challenges.In this paper,in order to find unknown nodes in Three-Dimensional environment,only single anchor node is used.In the simulation-based environment,the nodes with unknown locations are moving at middle&lower layers whereas the top layer is equipped with single anchor node.A novel soft computing technique namely Adaptive Plant Propagation Algorithm(APPA)is introduced to obtain the optimized locations of these mobile nodes.Thesemobile target nodes are heterogeneous and deployed in an anisotropic environment having an Irregularity(Degree of Irregularity(DOI))value set to 0.01.The simulation results present that proposed APPAalgorithm outperforms as tested among other meta-heuristic optimization techniques in terms of localization error,computational time,and the located sensor nodes. 展开更多
关键词 Wireless sensor networks LOCALIZATION particle swarm optimization h-best particle swarm optimization biogeography-based optimization grey wolf optimizer firefly algorithm adaptive plant propagation algorithm
下载PDF
改进迁移算子的BBO算法及其在PID参数中的优化 被引量:3
18
作者 裴沛 李彩伟 吕波特 《计算机应用》 CSCD 北大核心 2020年第3期728-734,共7页
针对生物地理学优化(BBO)算法寻优过程中易陷入搜索动力不足、收敛精度不高等问题,提出一种基于改进迁移算子的生物地理学优化算法(IMO-BBO)。在BBO算法基础上,结合"优胜劣汰"的进化思想,将迁移距离作为影响因素对迁移算子进... 针对生物地理学优化(BBO)算法寻优过程中易陷入搜索动力不足、收敛精度不高等问题,提出一种基于改进迁移算子的生物地理学优化算法(IMO-BBO)。在BBO算法基础上,结合"优胜劣汰"的进化思想,将迁移距离作为影响因素对迁移算子进行改进,并用差分策略将不适宜迁移的个体进行替换,以增加算法的局部探索能力。同时为丰富物种的多样性,引入多种群概念。利用IMO-BBO算法分别对13个基准测试函数进行测试,与基于协方差迁移算子和混合差分策略的BBO(CMM-DE/BBO)算法和BBO算法相比,改进算法提高了对全局最优解的搜索能力,在收敛速度和精确度上也都有显著提高;将IMO-BBO算法应用到PID参数整定中,仿真结果表明,所提算法优化后的控制器具有更快的响应速度和更稳定的精度。 展开更多
关键词 生物地理学优化算法 迁移算子 迁移距离 自适应 双种群 协作算子 PID
下载PDF
基于改进BBO算法优化KELM的短期风电功率预测
19
作者 任瑞琪 《无线互联科技》 2020年第18期137-141,共5页
针对短期风电功率预测,文章提出了一种改进的生物地理学优化算法优化核极限学习机的BBO-KELM-2预测模型。生物地理学优化算法(BBO)以生物的地理分布规律为基础,通过栖息地中的物种迁入、迁出和突变的信息交换机制来寻求全局最优解,其优... 针对短期风电功率预测,文章提出了一种改进的生物地理学优化算法优化核极限学习机的BBO-KELM-2预测模型。生物地理学优化算法(BBO)以生物的地理分布规律为基础,通过栖息地中的物种迁入、迁出和突变的信息交换机制来寻求全局最优解,其优点为计算简单、收敛速度快、设置参数少和稳定性好。传统的BBO算法存在线性迁移模型容易陷入局部最优的问题,因此文章在采用余弦迁移模型的基础上,引入混沌映射理论,并将改进的BBO优化算法应用于KELM网络以优化输入结构,核函数的参数以及Tikhonov正则化系数,对KELM的建模方法做出改进。为验证该方法的有效性,将BBO-KELM-2方法应用于某地区的短期风电功率预测研究中,在同等条件下与采用线性迁移模型的原始BBO-KELM-1等现有方法进行比较,实验结果表明,BBO-KELM-2方法具有很好的预测性能,建模精度最高。 展开更多
关键词 风电功率 预测 核极限学习机 bbo优化算法 混沌映射理论
下载PDF
基于改进BBO算法优化KELM的短期风电功率预测
20
作者 任瑞琪 《西安轨道交通职业教育研究》 2021年第3期19-23,30,共6页
针对短期风电功率预测,文章提出了一种改进的生物地理学优化算法优化核极限学习机的BBO-KELM-2预测模型。生物地理学优化算法(BBO)以生物的地理分布规律为基础通过栖息地中的物种迁入、迁出和突变的信息交换机制来寻求全局最优解,其优... 针对短期风电功率预测,文章提出了一种改进的生物地理学优化算法优化核极限学习机的BBO-KELM-2预测模型。生物地理学优化算法(BBO)以生物的地理分布规律为基础通过栖息地中的物种迁入、迁出和突变的信息交换机制来寻求全局最优解,其优点为计算简单、收敛速度快、设置参数少和稳定性好。传统的BBO算法存在线性迁移模型容易陷入局部最优的问题,因此文章在采用余弦迁移模型的基础上,引入混沌映射理论,并将改进的BBO优化算法应用于KELM网络以优化输入结构,核函数的参数以及Tikhonov正则化系数,对KELM的建模方法做出改进。为验证该方法的有效性,将BBO-KELM-2方法应用于某地区的短期风电功率预测研究中,在同等条件下与采用线性迁移模型的原始BBO-KELM-1等现有方法进行比较,实验结果表明,BBO-KELM-2方法具有很好的预测性能,建模精度最高。 展开更多
关键词 风电功率 预测 核极限学习机 bbo优化算法 混沌映射理论
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部