期刊文献+
共找到201篇文章
< 1 2 11 >
每页显示 20 50 100
Bio-assembled smart nanocapsules for targeted delivery of KRAS shRNA and cancer cell bioimage
1
作者 Maonan Wang Zengchao Guo +7 位作者 Jiayu Zeng Liu Liu Yihan Wang Jinpeng Wang Hongbing Lu Haijun Zhang Hui Jiang Xuemei Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期270-273,共4页
The five-year survival rate for pancreatic cancer is less than 5%. However, the current clinical multimodal therapy combined with first-line chemotherapy drugs only increases the patient’s median survival from 5.0 mo... The five-year survival rate for pancreatic cancer is less than 5%. However, the current clinical multimodal therapy combined with first-line chemotherapy drugs only increases the patient’s median survival from 5.0 months to 7.2 months. Consequently, a new strategy of cancer treatments is urgently needed to overcome this high-fatality disease. Through a series of biometric analyses, we found that KRAS is highly expressed in the tumor of pancreatic cancer patients, and this high expression is closely related to the poor prognosis of patients. It shows that inhibiting the expression of KRAS has great potential in gene therapy for pancreatic cancer. Given those above, we have exploited the possibility of targeted delivery of KRAS shRNA with the intelligent and bio-responsive nanomedicine to detect the special oxidative stress microenvironment of cancer cells and realize efficient cancer theranostics. Our observations demonstrate that by designing the smart self-assembled nanocapsules of melanin with fluorescent nanoclusters we can readily achieve the bio-recognition and bioimaging of cancer cells in biological solution or serum.The self-assembled nanocapsules can make a significant bio-response to the oxidative stress microenvironment of cancer cells and generate fluorescent zinc oxide Nanoclusters in situ for targeted cell bioimaging. Moreover, it can also readily facilitate cancer cell suppression through the targeted delivery of KRAS shRNA and low-temperature hyperthermia. This raises the possibility to provide a promising theranostics platform and self-assembled nanomedicine for targeted cancer diagnostics and treatments through special oxidative stress-responsive effects of cancer cells. 展开更多
关键词 Smart bio-responsive nanocapsules Intelligent nanomedicine SHRNA KRAS Fluorescent bioimaging Oxidative stress response
原文传递
Bioimage-based protein subcellular location prediction: a comprehensive review 被引量:2
2
作者 Ying-Ying XU Li-Xiu YAO Hong-Bin SHEN 《Frontiers of Computer Science》 SCIE EI CSCD 2018年第1期26-39,共14页
Subcellular localization of proteins can provide key hints to infer their functions and structures in cells. With the breakthrough of recent molecule imaging techniques, the usage of 2D bioimages has become increasing... Subcellular localization of proteins can provide key hints to infer their functions and structures in cells. With the breakthrough of recent molecule imaging techniques, the usage of 2D bioimages has become increasingly popular in automatically analyzing the protein subcellular location pat- terns. Compared with the widely used protein 1D amino acid sequence data, the images of protein distribution are more intuitive and interpretable, making the images a better choice at many applications for revealing the dynamic char- acteristics of proteins, such as detecting protein translocation and quantification of proteins. In this paper, we systemati- cally reviewed the recent progresses in the field of automated image-based protein subcellular location prediction, and clas- sified them into four categories including growing of bioim- age databases, description of subcellular location distribution patterns, classification methods, and applications of the pre- diction systems. Besides, we also discussed some potential directions in this field. 展开更多
关键词 bioimage informatics protein subcellular loca-tion prediction global and local features multi-location pro-tein recognition
原文传递
Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles
3
作者 Dongmiao Sang Xiaoxi Luo Jinbin Liu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期69-98,共30页
Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticl... Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation. 展开更多
关键词 Ultrasmall gold nanoparticle Cellular interaction Organ interaction Tumor interaction BIOIMAGING
下载PDF
A novelα-ketoamide reactivity-based two-photon fluorogenic probe for visualizing peroxynitrite in Parkinson's disease models
4
作者 Tao Shao Xianning Xu +8 位作者 Lan Wang Yu Shen Jun Zhao Huizi Li Duoteng Zhang Wei Du Hua Bai Bo Peng Lin Li 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2023年第4期79-89,共11页
Peroxynitrite(ONOO^(-))contributes to oxidative stress and neurodegeneration in Parkinson's disease(PD).Developing a peroxynitrite probe would enable in situ visualization of the overwhelming ONOO^(-)flux and unde... Peroxynitrite(ONOO^(-))contributes to oxidative stress and neurodegeneration in Parkinson's disease(PD).Developing a peroxynitrite probe would enable in situ visualization of the overwhelming ONOO^(-)flux and understanding of the ONOO^(-)stress-induced neuropathology of PD.Herein,a novelα-ketoamide-based fluorogenic probe(DFlu)was designed for ONOO^(-)monitoring in multiple PD models.The results demonstrated that DFlu exhibits a fluorescence turn-on response to ONOO^(-)with high specificity and sensitivity.The efficacy of DFlu for intracellular ONOO^(-)imaging was demonstrated systematically.The results showed that DFlu can successfully visualize endogenous and exogenous ONOO^(-)in cells derived from chemical and biochemical routes.More importantly,the two-photon excitation ability of DFlu has been well demonstrated by monitoring exogenous/endogenous ONOO^(-)production and scavenging in live zebraflsh PD models.This work provides a reliable and promisingα-ketoamide-based optical tool for identifying variations of ONOO^(-)in PD models. 展开更多
关键词 α-Ketoamide two-photon fluorogenic probe BIOIMAGING PEROXYNITRITE Parkinson's disease.
下载PDF
Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications 被引量:14
5
作者 Shuqi Wu Yang Li +3 位作者 Weihang Ding Letong Xu Yuan Ma Lianbing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第6期1-26,共26页
Persistent luminescence phosphors are a novel group of promising luminescent materials with afterglow properties after the stoppage of excitation.In the past decade,persistent luminescence nanoparticles(PLNPs)with int... Persistent luminescence phosphors are a novel group of promising luminescent materials with afterglow properties after the stoppage of excitation.In the past decade,persistent luminescence nanoparticles(PLNPs)with intriguing optical properties have attracted a wide range of attention in various areas.Especially in recent years,the development and applications in biomedical fields have been widely explored.Owing to the efficient elimination of the autofluorescence interferences from biotissues and the ultra-long near-infrared afterglow emission,many researches have focused on the manipulation of PLNPs in biosensing,cell tracking,bioimaging and cancer therapy.These achievements stimulated the growing interest in designing new types of PLNPs with desired superior characteristics and multiple functions.In this review,we summarize the works on synthesis methods,bioapplications,biomembrane modification and biosafety of PLNPs and highlight the recent advances in biosensing,imaging and imaging-guided therapy.We further discuss the new types of PLNPs as a newly emerged class of functional biomaterials for multiple applications.Finally,the remaining problems and challenges are discussed with suggestions and prospects for potential future directions in the biomedical applications. 展开更多
关键词 PERSISTENT LUMINESCENCE NANOPARTICLES BIOSENSING BIOIMAGING Cell tracking Cancer THERAPY
下载PDF
A Review on Graphene-Based Nanomaterials in Biomedical Applications and Risks in Environment and Health 被引量:21
6
作者 Thabitha P.Dasari Shareena Danielle McShan +1 位作者 Asok K.Dasmahapatra Paul B.Tchounwou 《Nano-Micro Letters》 SCIE EI CAS 2018年第3期164-197,共34页
Graphene-based nanomaterials(GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, d... Graphene-based nanomaterials(GBNs) have attracted increasing interests of the scientific community due to their unique physicochemical properties and their applications in biotechnology, biomedicine, bioengineering, disease diagnosis and therapy. Although a large amount of researches have been conducted on these novel nanomaterials, limited comprehensive reviews are published on their biomedical applications and potential environmental and human health effects. The present research aimed at addressing this knowledge gap by examining and discussing:(1) the history, synthesis,structural properties and recent developments of GBNs for biomedical applications;(2) GBNs uses as therapeutics,drug/gene delivery and antibacterial materials;(3) GBNs applications in tissue engineering and in research as biosensors and bioimaging materials; and(4) GBNs potential environmental effects and human health risks. It also discussed the perspectives and challenges associated with the biomedical applications of GBNs. 展开更多
关键词 Graphene-based nanomaterials Biomedical Delivery Biosensors Tissue engineering BIOIMAGING Health and environment risks
下载PDF
Photostable and Biocompatible Fluorescent Silicon Nanoparticles for Imaging-Guided Co-Delivery of siRNA and Doxorubicin to Drug-Resistant Cancer Cells 被引量:5
7
作者 Daoxia Guo Xiaoyuan Ji +4 位作者 Fei Peng Yiling Zhong Binbin Chu Yuanyuan Su Yao He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第2期127-139,共13页
The development of effective and safe vehicles to deliver small interfering RNA(siRNA) and chemotherapeutics remains a major challenge in RNA interference-based combination therapy with chemotherapeutics,which has eme... The development of effective and safe vehicles to deliver small interfering RNA(siRNA) and chemotherapeutics remains a major challenge in RNA interference-based combination therapy with chemotherapeutics,which has emerged as a powerful platform to treat drug-resistant cancer cells.Herein,we describe the development of novel all-in-one fluorescent silicon nanoparticles(SiNPs)-based nanomedicine platform for imaging-guided co-delivery of siRNA and doxorubicin(DOX).This approach enhanced therapeutic efficacy in multidrug-resistant breast cancer cells(i.e.,MCF-7/ADR cells).Typically,the SiNP-based nanocarriers enhanced the stability of siRNA in a biological environment(i.e.,medium or RNase A) and imparted the responsive release behavior of siRNA,resulting in approximately 80% down-regulation of P-glycoprotein expression.Co-delivery of P-glycoprotein siRNA and DOX led to>35-fold decrease in the half maximal inhibitory concentration of DOX in comparison with free DOX,indicating the pronounced therapeutic efficiency of the resultant nanocomposites for drug-resistant breast cancer cells.The intracellular time-dependent release behaviors of siRNA and DOX were revealed through tracking the strong and stable fluorescence of SiNPs.These data provide valuable information for designing effective RNA interference-based co-delivery carriers. 展开更多
关键词 FLUORESCENT silicon nanoparticles Drug resistance Gene therapy BIOIMAGING
下载PDF
Insights into Theranostic Properties of Titanium Dioxide for Nanomedicine 被引量:4
8
作者 Morteza Hasanzadeh Kafshgari Wolfgang HGoldmann 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期102-136,共35页
Titanium dioxide(TiO2)nanostructures exhibit a broad range of theranostic properties that make them attractive for biomedical applications.TiO2 nanostructures promise to improve current theranostic strategies by lever... Titanium dioxide(TiO2)nanostructures exhibit a broad range of theranostic properties that make them attractive for biomedical applications.TiO2 nanostructures promise to improve current theranostic strategies by leveraging the enhanced quantum confinement,thermal conversion,specific surface area,and surface activity.This review highlights certain important aspects of fabrication strategies,which are employed to generate multifunctional TiO2 nanostructures,while outlining post-fabrication techniques with an emphasis on their suitability for nanomedicine.The biodistribution,toxicity,biocompatibility,cellular adhesion,and endocytosis of these nanostructures,when exposed to biological microenvironments,are examined in regard to their geometry,size,and surface chemistry.The final section focuses on recent biomedical applications of TiO2 nanostructures,specifically evaluating therapeutic delivery,photodynamic and sonodynamic therapy,bioimaging,biosensing,tissue regeneration,as well as chronic wound healing. 展开更多
关键词 TiO2 nanostructures Drug delivery systems BIOIMAGING BIOSENSING Tissue regeneration
下载PDF
Ⅰ-Ⅲ-Ⅵ chalcogenide semiconductor nanocrystals:Synthesis,properties,and applications 被引量:3
9
作者 Shiqi Li Xiaosheng Tang +4 位作者 Zhigang Zang Yao Yao Zhiqiang Yao Haizheng Zhong Bingkun Chen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期590-605,共16页
Colloidal semiconductor nanocrystals have been proven to be promising candidates for applications in low‐cost and high‐performance photovoltaics,bioimaging,and photocatalysis due to their novel size‐and shape‐depe... Colloidal semiconductor nanocrystals have been proven to be promising candidates for applications in low‐cost and high‐performance photovoltaics,bioimaging,and photocatalysis due to their novel size‐and shape‐dependent properties.Among the colloidal systems,I‐III‐VI semiconductor nanocrystals(NCs)have drawn much attention in the past few decades.Compared to binary NCs,ternary I‐III‐VI NCs not only exhibit low toxicity,but also a high performance similar to that of binary NCs.In this review,we mainly focus on the synthesis,properties,and applications of I‐III‐VI NCs.We summarize the major synthesis methods,analyze their photophysical and electronic properties,and highlight some of the latest applications of I‐III‐VI NCs in solar cells,light‐emitting diodes,bioimaging,and photocatalysis.Finally,based on the information reviewed,we highlight the existing problems and challenges. 展开更多
关键词 I‐III‐VI nanocrystal Synthesis method Solar cell Light emitting diode BIOIMAGING PHOTOCATALYSIS
下载PDF
Fluorescence lifetime imaging of fluorescent proteins as an effective quantitative tool for noninvasive study of intracellular processes 被引量:3
10
作者 Svitlana MLevchenko Artem Pliss Junle Qu 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第1期13-21,共9页
Fluorescence litime imaging(FLIM)is an effective noninvasive bioanalytical tol based onmeasuring fuorescent lifetime of fuorophores.A growing number of FLIM studies utilizes ge-netically engineered fluorescent protein... Fluorescence litime imaging(FLIM)is an effective noninvasive bioanalytical tol based onmeasuring fuorescent lifetime of fuorophores.A growing number of FLIM studies utilizes ge-netically engineered fluorescent proteins targeted to specific subcellular structures to probe localmolecular environment,which opens new directions in cell science.This paper highlights theunconventional applications of FLIM for studies of molecular processes in diverse organelles oflive cultured cells. 展开更多
关键词 Fluorescence lifetime imaging fluorescent proteins BIOIMAGING intracellular procescs
下载PDF
Biomass-Derived Carbon Dots and Their Applications 被引量:21
11
作者 Weixue Meng Xue Bai +3 位作者 Boyang Wang Zhongyi Liu Siyu Lu Bai Yang 《Energy & Environmental Materials》 2019年第3期172-192,共21页
Carbon dots(CDs) have received much attention due to their superior properties including water solubility, low toxicity, biocompatibility, small size,fluorescence, and ease of modification. The use of a more environme... Carbon dots(CDs) have received much attention due to their superior properties including water solubility, low toxicity, biocompatibility, small size,fluorescence, and ease of modification. The use of a more environmentally friendly method to prepare high-quality CDs is still an urgent question waiting for solve. The use of renewable, inexpensive, and green biomass resources not only meets the urgent need for large-scale synthesis biomass CDs(BCDs), but also promotes the development of sustainable applications.In this article, we summarize the representative methods for synthesizing BCDs in green and simple ways using biomass as a carbon source, including hydrothermal carbonization, and microwave, pyrolysis. The prepared BCDs have a uniform particle size distribution and a relatively high throughput,which provide a method to scale up industrial production. Moreover, the integration of specific optical properties, that is, tunable photoluminescence and up-photoluminescence, has led to remarkable use in bioimaging, sensing,and drug delivery. But the current review is not particularly comprehensive for BCDs. Therefore, we now provide a review focusing on the synthesis,properties, and recent advances in BCDs in biosensing, bioimaging,optoelectronics, and catalytic applications. 展开更多
关键词 BIOIMAGING BIOMASS carbon dots CATALYSIS SYNTHESES
下载PDF
Labeling of influenza viruses with synthetic fluorescent and biotin-labeled lipids 被引量:2
12
作者 Natalia A Ilyushina Evgeny S Chernyy +3 位作者 Elena Y Korchagina Aleksra S Gambaryan Stephen M Henry Nicolai V Bovin 《Virologica Sinica》 SCIE CAS CSCD 2014年第4期199-210,共12页
Direct labeling of virus particles is a powerful tool for the visualization of virus–cell interaction events. However, this technique involves the chemical modification of viral proteins that affects viral biological... Direct labeling of virus particles is a powerful tool for the visualization of virus–cell interaction events. However, this technique involves the chemical modification of viral proteins that affects viral biological properties. Here we describe an alternative approach of influenza virus labeling that utilizes Function-Spacer-Lipid(FSL) constructs that can be gently inserted into the virus membrane. We assessed whether labeling with fluorescent(fluo-Ad-DOPE) or biotin-labeled(biot-CMG2-DOPE) probes has any deleterious effect on influenza virus hemagglutinin(HA) receptor specificity, neuraminidase(NA) activity, or replicative ability in vitro. Our data clearly show that neither construct significantly affected influenza virus infectivity or viral affinity to sialyl receptors. Neither construct influenced the NA activities of the influenza viruses tested, except the A/Puerto Rico/8/34(H1N1) strain. Our data indicate that lipid labeling provides a powerful tool to analyze influenza virus infection in vitro. 展开更多
关键词 BIOIMAGING Function-Spacer-Lipid (FSL) constructs labeling of influenza viruses synthetic lipids
下载PDF
Upconversion nanoparticle as a theranostic agent for tumor imaging and therapy 被引量:1
13
作者 Wenkai Fang Yanchun Wei 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2016年第4期27-46,共20页
Upconversion nanoparticles(UCNPs)as a promising material are widely studied due to their unique optical properties.The material can be excited by long w avelength light and emit visible wavelength light through multip... Upconversion nanoparticles(UCNPs)as a promising material are widely studied due to their unique optical properties.The material can be excited by long w avelength light and emit visible wavelength light through multiphoton absorption.This property makes the particles highly attractive candidates for bioimaging and therapy application.This review aims at summarizing the synthesis and modification of UCNPs,especially the applications of UCNPs as a theranostic agent for tumor imaging and therapy.The biocompatibility and toxicity of UCNPs are also further discussed.Finally,we discuss the challenges and opportunities in the development of UCNP-based nanoplatforms for tumor imaging and therapy. 展开更多
关键词 Laser upconversion material BIOIMAGING TOXICITY
下载PDF
Plasmonic nanoparticles and nucleic acids hybrids for targeted gene delivery,bioimaging,and molecular recognition 被引量:1
14
作者 Timofey Pylaev Elena Avdeeva Nikolai Khlebtsov 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2021年第4期3-30,共28页
Promising biomedical applications of hybrid materials composed of gold nanoparticles and nucleic acids have attracted strong interest from the nanobiotechnological community.The particular interest is owing to the rob... Promising biomedical applications of hybrid materials composed of gold nanoparticles and nucleic acids have attracted strong interest from the nanobiotechnological community.The particular interest is owing to the robust and easy-to-make synthetic approaches,to the versatile optical and catalytic properties of gold nanoparticles combined with the molecular recognition and programmable properties of nucleic acids.The significant progress is made in the develop-ment of DNA-gold nanostructures and their applications,such as molecular recognition,cell and tissue bioimaging,targeted delivery of therapeutic agents,etc.This review is focused on the critical discussion of the recent applications of the gold nanoparticles-nucleic acids hybrids.The effect of particle size,surface,charge and thermal properties on the interactions with functional nucleic acids is discussed.For each of the above topics,the basic principles,recent advances,and current challenges are discussed.Emphasis is placed on the systematization of data over the theranostic systems on the basis of the gold nanoparticles-nucleic acids hybrids.Specifically,we start our discussion with observation of the recent data on interaction of various gold nano-particles with nucleic acids.Further we describe existing gene delivery systems,nucleic acids detection,and bioimaging technologies.Finally,we describe the phenomenon of the polymerase chain reaction improvement by gold nanoparticle additives and its potential underlying mechanisms.Lastly,we provide a short summary of reported data and outline the challenges and perspectives. 展开更多
关键词 gold nanoparticles delivery DNA detection BIOIMAGING
下载PDF
Crystal Structure, One-and Two-photon Excited Fluorescence and Bioimaging of a D-π-A Structural Triphenylamine Derivative 被引量:1
15
作者 JIN Feng YE Zhi-Feng +3 位作者 LIAO Rong-Bao QIAO Ling-Yan TAO Dong-Liang LIU Yong 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2019年第2期224-232,166,共10页
An electron donor-π-bridge-electron acceptor(D-π-A) optical functional organic compound comprising a triphenylamine moiety as the electron donor and pyridine moiety as the electron acceptor was synthesized. The stru... An electron donor-π-bridge-electron acceptor(D-π-A) optical functional organic compound comprising a triphenylamine moiety as the electron donor and pyridine moiety as the electron acceptor was synthesized. The structure of the compound was solved by single-crystal X-ray diffraction analysis. It crystallizes in monoclinic, space group P21, with a = 9.753(5), b = 8.815(5), c = 25.554(5) ?, β = 96.315(5)°, V = 2184(2) ?~3, Z = 2, D_c = 1.136 g/m^3, F(000) = 792, Μr = 746.92, μ = 0.069 mm^(-1), the final R = 0.0658 and wR = 0.1730 for 6790 observed reflections with I > 2(I). Study of nonlinear optical properties shows that the compound exhibits excellent two-photon excited fluorescence with the two-photon absorption cross-section value of 116 GM. The structure-property relationship was researched in detail through X-ray crystallography and quantum chemical calculation. Result of living cell imaging experiment shows its potential in fluorescence microscopy bioimaging. 展开更多
关键词 triphenylamine crystal structure TWO-PHOTON EXCITED FLUORESCENCE BIOIMAGING
下载PDF
Early diagnosis and bioimaging of lung adenocarcinoma cells/organs based on spectroscopy machine learning 被引量:1
16
作者 Xiangrong Peng Ruiyi Dai +4 位作者 Yaqun Ma Bi Lin Xin Hui Xueli Chen Ruichan Lv 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第2期68-82,共15页
Early diagnosis and fast detection with a high accuracy rate of lung cancer are important to improve the treatment effect.In this research,an early fast diagnosis and in vivo imaging method for lung adenocarcinoma are... Early diagnosis and fast detection with a high accuracy rate of lung cancer are important to improve the treatment effect.In this research,an early fast diagnosis and in vivo imaging method for lung adenocarcinoma are proposed by collecting the spectral data from normal and patients'cells/tissues,such as Fourier infrared spectroscopy(FTIR),UV-vis absorbance,and fluorescence spectra using anthocyanin.The FTIR spectra of human normal lung epithelial cells(BEAS-2B cells)and human lung adenocarcinoma cells(A549 cells)were collected.After the data is cleaned,a feature selection algorithm is used to select important wavelengths,and then,the classification models of support vector machine(SVM)and the grid search method are used to select the optimal model parameters(accuracy:96.89%on the training set and 88.57%on the test set).The optimal model is used to classify all samples,and the accuracy is 94.37%.Moreover,the anthocyanin was prepared and used for the intracellular absorbance and fluorescence,and the optimized algorithm was used for classification(accuracy:91.38%on the training set and 80.77%on the test set).Most importantly,the in vivo cancer imaging can be performed using anthocyanin.The results show that there are differences between lung ade-nocarcinoma and normal lung tissues at the molecular level,reflecting the accuracy,intui-tiveness,and feasibility of this algorithm-assistant anthocyanin imaging in lung cancer diagnosis,thus showing the potential to become an accurate and effective technical means for basic research and clinical diagnosis. 展开更多
关键词 Early diagnosis and bioimaging SPECTRA machine learning
下载PDF
Review of Carbon Dots from Lignin: Preparing, Tuning, and Applying 被引量:1
17
作者 Tao Zhang Haiming Li +4 位作者 Jingpeng Zhou Xing Wang Lingping Xiao Fengshan Zhang Yanzhu Guo 《Paper And Biomaterials》 CAS 2022年第3期51-62,共12页
Carbon dots(CDs),emerging carbon materials with unique physical and chemical properties,have drawn extensive attention from researchers.In recent years,many carbon sources have been used as precursors for preparing CD... Carbon dots(CDs),emerging carbon materials with unique physical and chemical properties,have drawn extensive attention from researchers.In recent years,many carbon sources have been used as precursors for preparing CDs.In contrast to other types of precursors,lignin,as a renewable and available source of natural aromatic biopolymers,is believed to be a low-cost precursor for the large-scale preparation of CDs.However,the preparation of CDs with excellent optical properties from lignin has some drawbacks because of the complex structure of lignin.Hence,the methods for preparing the CDs from lignin are summarized in this paper,and the mechanism and physical and chemical properties of lignin-based CDs are discussed.Moreover,some approaches to tuning the optical properties of lignin-based CDs have been proposed.Additionally,the use of lignin-based CDs in the fields of sensing,supercapacitor,bioimaging,anti-counterfeiting,and information encryption is reviewed. 展开更多
关键词 LIGNIN carbon dots fluorescence tuning sensing SUPERCAPACITOR BIOIMAGING
下载PDF
Refocusing and locating effect of fluorescence scattering field
18
作者 Jian-Gong Cui Ya-Xin Yu +4 位作者 Xiao-Xia Chu Rong-Yu Zhao Min Zhu Fan Meng Wen-Dong Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第12期459-466,共8页
Optical imaging deep inside scattering medium has always been one of the challenges in the field of bioimaging,which significantly drawbacks the employment of con-focal microscopy system.Although a variety of feedback... Optical imaging deep inside scattering medium has always been one of the challenges in the field of bioimaging,which significantly drawbacks the employment of con-focal microscopy system.Although a variety of feedback techniques,such as acoustic or nonlinear fluorescence-based schemes have realized the refocusing of the coherent light,the problems of non-invasively refocusing and locating of linearly-excited fluorescent beads inside the scattering medium have not been thoroughly explored.In this paper,we linearly excited the fluorescent beads inside a scattering medium by using our homemade optical con-focal system,collected the fluorescence scattering light as the optimized target,and established a theoretical model of target contrast enhancement,which is consistent with the experimental data.By improving both the cost function and variation rate within the genetic algorithm,we could refocus the fluorescence scattering field while improving the contrast enhancement factor to 12.8 dB.Then,the positions of the fluorescent beads are reconstructed by subpixel accuracy centroid localization algorithm,and the corresponding error is no more than 4.2μm with several fluorescent beads within the field of view.Finally,the main factors such as the number of fluorescent beads,the thickness of the scattering medium,the modulating parameter,the experimental noise and the system long-term stability are analyzed and discussed in detail.This study proves the feasibility of reconstructing fluorescent labeled cells inside biological tissues,which provides certain reference value for deep imaging of biological tissues. 展开更多
关键词 optical focusing BIOIMAGING genetic algorithm centroid locating
下载PDF
The role of surface functionalization of silica nanoparticles for bioimaging
19
作者 Maria C.Gomes Angela Cunha +1 位作者 Tito Trindade João P.C.Tome 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2016年第4期11-26,共16页
Among the several types of inorganic nanoparticles available,silica nanoparticles(SNP)have earned their relevance in biological applications namely,as bioimaging agents.In fact,uorescent SNP(FSNP)have been explored in... Among the several types of inorganic nanoparticles available,silica nanoparticles(SNP)have earned their relevance in biological applications namely,as bioimaging agents.In fact,uorescent SNP(FSNP)have been explored in this-eld as protective nanocarriers,overcoming some limitations presented by conventional organic dyes such as high photobleaching rates.A crucial aspect on the use of uorescent SNP relates to their surface properties,since it determines the extent of interaction between nanoparticles and biological systems,namely in terms of colloidal stability in water,cellular recognition and internalization,tracking,biodistribution and speci-city,among others.Therefore,it is imperative to understand the mechanisms underlying the interaction between biosystems and the SNP surfaces,making surface functionalization a relevant step in order to take full advantage of particle properties.The versatility of the surface chemistry on silica platforms,together with the intrinsic hydrophilicity and biocompatibility,make these systems suitable for bioimaging applications,such as those mentioned in this review. 展开更多
关键词 Fluorescent silica nanoparticles BIOIMAGING surface functionalization nanoparticlecell interactions.
下载PDF
Fabrication of Excitation-Independent Green Emissive Graphene Quantum Dots for Selective Detection of Hg^(2+) and Fluorescence Imaging of Biothiols in Living Cells
20
作者 MA Qifeng WANG Lei +3 位作者 CHEN Yansong LUO Xiaosong ZHU Zhijia ZHANG Xuan 《Journal of Donghua University(English Edition)》 EI CAS 2018年第5期373-379,共7页
Nitrogen-doped graphene quantum dots( N-GQDs)exhibiting excitation-independent green fluorescence emission( 536 nm) was facilely synthesized. The as-prepared N-GQDs showed a highly selective fluorescence quenching res... Nitrogen-doped graphene quantum dots( N-GQDs)exhibiting excitation-independent green fluorescence emission( 536 nm) was facilely synthesized. The as-prepared N-GQDs showed a highly selective fluorescence quenching response toward Hg2 + with a linear range of 0. 1-30. 0 μmol/L and detection limit of50 nmol/L. Based on the high affinity of biothiols( such as cysteine)toward Hg2 +, the quenched fluorescence of N-GQDs could be recovered upon addition of biothiols,and thereby a new fluorescence turn-on probe for cysteine detection was further developed. The linear range and detection limit for cysteine were found to be 0. 1-12. 5 μmol/L and 46 nmol/L,respectively. The present fluorescent probe worked well in a physiological pure water medium,allowing a fluorescence imaging of cysteine in living cells. 展开更多
关键词 FLUORESCENT probe GRAPHENE quantum dots(GQDs) MERCURY ion CYSTEINE BIOIMAGING
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部