The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied....The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied. The results show that the extraction rates of Fe, Cu and Zn from the slag reach 86.7%, 90.3% and 66.7% after adsorbed bacteria sterilize, while those with adsorbed bacteria are 91.9%, 96.0% and 84.5% in conditions of pulp density 2%, pH 1.0, temperature 65 °C and stirring rate 120 r/min, respectively. Some stretching peaks of functional groups from bacterial secretes on the bioleached residue surface, such as 1007 cm-1 and 1193 cm-1, turn up through FI-IR analysis and indirectly reveal the presence of the adsorbed bacteria on the slag particles surface. Besides, the corrosion of zinc smelting slag is enhanced by bacteria according to the characteristics of cyclic voltametry and Tafel curves in bioleaching system.展开更多
The column bioleaching of copper flotation tailings was comparatively investigated using layered heap construction method(LM),agglomerate heap construction method(AM),and pellets-sintering heap construction method(PM)...The column bioleaching of copper flotation tailings was comparatively investigated using layered heap construction method(LM),agglomerate heap construction method(AM),and pellets-sintering heap construction method(PM).The bacterial communities of free,attached,weakly-attached,and strongly-attached microbes in the later bioleaching stage were investigated.In AM group,the addition of lump sulphide ore resulted in the low leachate pH,high ferric iron concentration,and rapid microbial adsorption,which obtained the maximum copper extraction(60.1%)compared with LM(54.6%)and PM(43.9%)groups.The relative abundance of dominant genera and microbial communities of different microbiota underwent changes in three heap construction methods.The alpha-diversity indexes of attached,weakly-attached,and strongly-attached microbes were different,while no significant change was observed in free bacteria.The variation of whole bacterial community was significantly associated with solution pH,total iron,and ferric iron concentrations.Pearson correlation analysis and partial least square path model both indicated that attached bacteria made larger contribution to the copper extraction of tailings.展开更多
Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low gra...Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.展开更多
A two-stage process has been developed for stabilization of sludge and removal of heavy metals from the secondary activated sludge with high rate of energy and time conservation. The first stage of the process involve...A two-stage process has been developed for stabilization of sludge and removal of heavy metals from the secondary activated sludge with high rate of energy and time conservation. The first stage of the process involves autoheated thermophilic aerobic digestion at 55-60℃ inoculated with less-acidophilic thermophilic sulfur-oxidizing microorganisms (ATAD). The results show that it is possible to maintain the autoheated conditions (55-60℃) in the ATAD reactor up to 24 hr, leading to reduction of 21% total solids (TS), 27% volatile solids (VS), 27% suspended solids (SS) and 33% volatile suspended solids (VSS) from the sludge. The sludge pH also decreased from 7 to 4.6 due to the activity of less-acidophilic thermophilic microorganisms. In the second stage operation, the digested sludge (pH 4.6, TS 31.6 g/L) from stage one was subjected to bioleaching in a continuous stirred tank reactor, operated at mean hydraulic retention times (HRTs) of 12, 24 and 36 hr at 30℃. An HRT of 24 hr was found to be sufficient for removal of 70% Cu, 70% Mn, 75% Ni, and 80% Zn from the sludge. In all, 39% VSS, 76% Cu, 78.2% Mn, 79.5% Ni and 84.2% Zn were removed from the sludge in both the stages.展开更多
Accumulation of toxic ions in leachate is one factor limiting bioleaching applications. The effect of fluoride ions on the growth of bioleaching microorganisms has been extensively emphasized. In this study, HF is fou...Accumulation of toxic ions in leachate is one factor limiting bioleaching applications. The effect of fluoride ions on the growth of bioleaching microorganisms has been extensively emphasized. In this study, HF is found to be the toxic form of fluoride that affects the bacterial activity under acidic conditions. The added aluminum could compete with H^+ to complex with F-, thus significantly decrease the concentration of HF and finally reduce the toxicity of fluoride to bacteria. When F^-/Al^(3+)concentration ratio is 0.5:1.0, Fe^(2+) oxidation rate could reach 0.167 g·L^(-1)·h^(-1), close to that of the biotic control group(0.195 g·L^(-1)·h^(-1)). The competitive complexation mechanism of fluoride by AlF_n^(3-n) results in stability constants of AlF_n^(3-n) complex(7.00) that are larger than those of HF(3.18). The F^-/Al^(3+) concentration ratio in the medium could affect the speciation of AlF_n^(3-n) complex.With the decrease in F^-/Al^(3+) concentration ratio, the coordination numbers of AlF_n^(3-n) decrease. Finally, the feasibility of fluoride detoxification by aluminum ion is verified. This work has meaningful implications for fluoride-containing bacterial bioleaching systems.展开更多
The recovery of vanadium(V)from stone coal by bioleaching is a promising method.The bioleaching experiments and the biosorption experiments were carried out,aiming to explore the adsorption characteristics of Bacillus...The recovery of vanadium(V)from stone coal by bioleaching is a promising method.The bioleaching experiments and the biosorption experiments were carried out,aiming to explore the adsorption characteristics of Bacillus mucilaginosus(B.mucilaginosus)on the surface of vanadium-bearing stone coal,and the related mechanisms have been investigated.After bioleaching at 30℃ for 28 d,the cumulative leaching rate of V reached 60.2%.The biosorption of B.mucilaginosus on stone coal was affected by many factors.When the pH value of leaching system is 5.0,strong electrostatic attraction between bacteria and stone coal promoted biosorption.Bacteria in the logarithmic growth phase had mature and excellent biosorption properties.The initial bacterial concentration of 3.5×10^(8) CFU/mL was conducive to adhesion,with 38.9%adsorption rate and 3.6×10^(7) CFU/g adsorption quantity.The adsorption of B.mucilaginosus on the stone coal conformed to the Freundlich model and the pseudo-second-order kinetic model.Bacterial surface carried functional groups(-CH_(2),-CH_(3),-NH_(2),etc.),which were highly correlated with the adsorption behavior.In addition,biosorption changed the surface properties of stone coal,resulting in the isoelectric point(IEP)approaching the bacteria.The results could provide an effective reference for the adsorption laws of bacteria on minerals.展开更多
The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different condition...The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different conditions of initial total-iron amount as well as mole ratio of Fe(III) to Fe(II) in the solutions containing synthetic extracellular polymeric substances (EPS).When the solution potential is lower than 650 mV (vs SHE),the inhibition of jarosites to bioleaching chalcopyrite is not vital as EPS produced by bacteria can retard the contamination through flocculating jarosites even if concentration of Fe(III) ions is up to 20 g/L but increases with increasing the concentration of Fe(III) ions;jarosites formed by bio-oxidized Fe3+ ions are more easy to adhere to outside surface of EPS space on chalcopyrite;the EPS layer with jarosites acts as a weak diffusion barrier to further rapidly create a high redox potential of more than 650 mV by bio-oxidizing Fe^2+ ions inside and outside EPS space into Fe^3+ ions,resulting in a rapid deterioration of ion diffusion performance of the EPS layer to inhibit bioleaching chalcopyrite severely and irreversibly.展开更多
The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction ...The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction mechanism of Cu2+,Fe3+ and EPS during bioleaching chalcopyrite.Generally,Cu2+ ions can stimulate bacteria to produce more EPS than Fe3+ ions.The mass ratio of Fe3+/Cu2+ enclosed in EPS decreased gradually from about 4:1 to about 2:1 when the concentration of Cu2+ ions increased from 0.01 to 0.04 mol/L.The amount of iron and copper bound together by EPS in ferrous-free 9K medium containing 1% chalcopyrite was about 2 times of that in 9K medium containing 0.04 mol/L Cu2+ ions.It was inferred that the EPS with jarosites on the surface of chalcopyrite gradually acted as a weak diffusion barrier for Cu2+,Fe3+ ions transference during bioleaching chalcopyrite.展开更多
The electrochemical oxidation behavior of pyrite in bioleaching system of Acidthiobacillusferrooxidans was investigated by cyclic voltammetry (CV), polarization curve and electrochemical impedance spectroscopy (EIS...The electrochemical oxidation behavior of pyrite in bioleaching system of Acidthiobacillusferrooxidans was investigated by cyclic voltammetry (CV), polarization curve and electrochemical impedance spectroscopy (EIS). The results show that in the presence or absence of A. ferrooxidans, the oxidation reaction of pyrite is divided into two steps: the first reaction step involves the oxidation of pyrite to S, and the second reaction step is the oxidation of S to SO4^2-. The oxidation mechanism of pyrite is not changed in the presence of A. ferrooxidans, but the oxidation rate of pyrite is accelerated. With the extension of reaction time of A. ferrooxidan with pyrite, the polarization current density of pyrite increases and the breakdown potential at which the passive film dissolves decreases. The impedance in the presence ofA. ferrooxidans is obviously lower than that in the absence of A. ferrooxidans, further indicating that microorganism accelerates the corrosion process of pyrite.展开更多
Extracellular polymeric substances (EPS) produced by acidophilic bioleaching microorganisms play an important role in the production of acid mine drainage and metal sulfide bioleaching. EPS mediate the contact betwe...Extracellular polymeric substances (EPS) produced by acidophilic bioleaching microorganisms play an important role in the production of acid mine drainage and metal sulfide bioleaching. EPS mediate the contact between microbial cells and growth substrates, having a pivotal role in organic film formation and bacterium-substratum interactions. The production and chemical composition of EPS produced by seven bioleaching strains grown with different substrates were studied. Analysis of the EPS extracted from these strains indicated that the EPS consisted of carbohydrates, proteins and galacturonic acid. The contents of EPS, carbohydrates, proteins and galacturonic acid of EPS were largely related to the kind of strain used and culture condition. The results show that EPS productions of microbes grown with pyrite were significantly higher than those of microbes grown with sulfur or FeSO4·7H2O. The highest EPS production of the seven acidiphilic strains was (159.43±3.93) mg/g, which was produced by Leptospirillum ferriphilum CBCBSUCSU208015 when cultivated with pyrite.展开更多
Passivation is a common phenomenon on the surface of chalcopyrite in the process of bioleaching. The ordinary leaching and strengthening leaching by adding glass beads were carried out. The results show that the passi...Passivation is a common phenomenon on the surface of chalcopyrite in the process of bioleaching. The ordinary leaching and strengthening leaching by adding glass beads were carried out. The results show that the passivation of chalcopyrite was greatly weakened in strengthening leaching due to the change of leaching conditions. The copper leaching efficiency was increased from 50% to 89.8% through adding beads. The SEM and X-ray diffraction (XRD) analyses illustrate that there are few jarosite precipitates and weak passivation on the surface of chalcopyrite in strengthening leaching. In contrast, there are thick and compact jarosite precipitate and obvious passivation in ordinary leaching, which hinders further dissolution of chalcopyrite.展开更多
The apparent sulfur oxidation activities of four pure thermophilic archaea, Acidianus brierleyi (JCM 8954), Metallosphaera sedula (YN 23), Acidianus manzaensis (YN 25) and Sulfolobus metallicus (YN 24) and the...The apparent sulfur oxidation activities of four pure thermophilic archaea, Acidianus brierleyi (JCM 8954), Metallosphaera sedula (YN 23), Acidianus manzaensis (YN 25) and Sulfolobus metallicus (YN 24) and their mixture in bioleaching chalcopyrite were compared, which were characterized indirectly by the evolution of the cells concentration, pH value and sulfate ions concentration in solution. The results show that the mixed culture contributed significantly to the raising of leaching rate, which suggests that the mixed culture had a higher sulfur oxidation activity than the pure culture. Meanwhile, the results also indicate that the changes of parameters characterizing the sulfur oxidation activity of thermophilic archaea are often influenced by many factors, so it is hard to reflect accurately the specific sulfur oxidation activities among the different sulfur-oxidizing microbes when bioleaching chalcopyrite at different conditions. Accordingly, an efficient method to characterize microbial sulfur oxidation activity appears to be desirable.展开更多
The variation of microbial community structure was investigated for the tank bioleaching process of Pb-Zn-Sn chalcopyrite concentrate in the presence of mixed moderately thermophilic bacteria. The parameters, such as ...The variation of microbial community structure was investigated for the tank bioleaching process of Pb-Zn-Sn chalcopyrite concentrate in the presence of mixed moderately thermophilic bacteria. The parameters, such as pH value, solution potential and concentrations of metal ions, were determined by the method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze the succession of microbial community. The results showed that a final copper extraction rate of 85.6% could be obtained after tank bioleaching for 30 d. The Acidithiobacillus caldus was the dominant population with abundance of about 73.80%in the initial stage, then Sulfobacillus thermosulfidooxidans dominated from the 18th day to the end of bioleaching, while the abundance of Leptospirillum ferriphilum changed slightly. A higher solution potential within a certain range and appropriate concentration of ferric ions were essential for this tank bioleaching of chalcopyrite.展开更多
To screen the high efficient mixed culture and understand the bioleaching behaviors of mixed culture for low-grade copper sulfide ore bioleaching,ten mixed cultures were collected and screened from different acid mine...To screen the high efficient mixed culture and understand the bioleaching behaviors of mixed culture for low-grade copper sulfide ore bioleaching,ten mixed cultures were collected and screened from different acid mine drainages obtained from sulfide mines of China.The leaching rate was set as criterion to screen the mixed culture and the metagenomic approach.Community genome array(CGA) was used for analyzing the mixed culture microbial community shift during the bioleaching process.The results indicate that the mixed culture obtained from Yinshan(YS) lead-zinc mine in Dexing of Jiangxi province in China reaches the maximum copper extraction(68.89%) during the one bioleaching period of 24 d.CGA results show that YS culture contains nine kinds of bacteria which are belong to six divisions,and the microbial community structure is changing during the bioleaching process.This provides a good way to accelerate the bioleaching process and reveals the microbial community shift during the bioleaching process.展开更多
Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated ...Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated that the copper extraction at pH 1.5 was 1.5 and 1.4 times that at pH 1.0 and pH 2.0 respectively. The copper extraction obtained at 45 ℃ was 1236.8%higher than that at 50 ℃. With the increase of rotation speed or the decrease of liquid volume, copper extraction was improved obviously. Copper extraction was improved gradually with the increase of pyrite ratio. However, when the ratio was higher than 20.0%, no further increase in copper extraction was observed. And the statistically significant interactive effects on copper extraction were found between temperature and pH, and temperature and pyrite ratio.展开更多
X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of ...X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.展开更多
Bioleaching Xiangjiang River alkaline sediment contaminated by multiple heavy metals was investigated. Multiple metals in alkaline sediment possess significant toxicity to aquatic organisms or humans and will greatly ...Bioleaching Xiangjiang River alkaline sediment contaminated by multiple heavy metals was investigated. Multiple metals in alkaline sediment possess significant toxicity to aquatic organisms or humans and will greatly inhibit bioleaching. The bioleaching method using autotrophic bacteria mixed with heterotrophic bacteria can solve this problem successfully. The experiment results showed that bioleaching efficiencies of Zn, Mn, Cu, and Cd were 95.2 %, 94.2 %, 90.1 %, and 84.4 %, respectively. Moreover, the changes of heavy metal concentrations in different fractions in contaminated sediment before and after bioleaching were analyzed by selective sequential extraction, and it was discovered that the main fractions of Zn, Mn, Cu and Cd after bioleaching are Fe-Mn oxide, organic associated form and a residual form. Its biotoxicity decreased greatly. The bioleaching heavy metals from sediment using autotrophic bacteria combined with heterotrophic bacteria can effectively improve the bioleaching efficiency and reduce toxicity.展开更多
The formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea Acidianus manzaensis were analyzed by combining synchrotron radiation X-ray diffraction(SR-XRD) and S...The formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea Acidianus manzaensis were analyzed by combining synchrotron radiation X-ray diffraction(SR-XRD) and S, Fe and Cu Kα X-ray absorption near edge structure(XANES) spectroscopy. Leaching experiment showed that 82.4% of Cu2+ was dissolved by A. manzaensis after 10 d. The surface of chalcopyrite was corroded apparently and covered with leaching products. During bioleaching, the formation and evolution of secondary minerals were as follows: 1) little elemental sulfur, jarosite, bornite and chalcocite were found at days 2 and 4; and 2) bornite and chalcocite disappeared, covellite formed, and jarosite gradually became the main component at days 6 and 10. These results indicated that metal-deficiency sulfides chalcocite and bornite were first formed with a low redox potential value(360-461 m V), and then gradually transformed to covellite with a high redox potential value(461-531 m V).展开更多
The function of microorganism and dissolution reaction pathway of carrollite in the bioleaching process were investigated. The results showed that both indirect and contact mechanisms influenced the leaching process. ...The function of microorganism and dissolution reaction pathway of carrollite in the bioleaching process were investigated. The results showed that both indirect and contact mechanisms influenced the leaching process. The dissolution of carrollite was significantly accelerated when bacteria were adsorbed on the mineral surface, indicating that the contact mechanism significantly affected the dissolution of carrollite. During bioleaching, the sequence of oxidation state of the sulfur moiety of carrollite was as follows: S?2→S0→S+4→S+6. Elemental sulfur precipitated on the mineral surface, indicating that the dissolution of carrollite occurred via the polysulfide pathway. The surface of carrollite was selectively corroded by bacteria, and oxidation pits with different sizes were observed at various sites. Elemental sulfur, sulfate and sulfite were present on the surface of carrollite during the leaching process, and may have formed a passivation layer on mineral surface.展开更多
Leptospirillum ferriphilum YXW was isolated through serial dilution from mixed microorganisms enriched in AMD from Dexing copper mine in Jiangxi Province, China. It was mutated by ultrasonic, UV and microwave to colle...Leptospirillum ferriphilum YXW was isolated through serial dilution from mixed microorganisms enriched in AMD from Dexing copper mine in Jiangxi Province, China. It was mutated by ultrasonic, UV and microwave to collect more efficient strain for bioleaching of gold ore. Physiological and biochemical characteristics indicate that strain YXW is a strict chemoautotrophic microorganism, and the optimal condition for its growth is temperature of 40 °C and pH 1.5. After mutation by ultrasonic, UV and microwave, the density of bacterial cells reached 9×109, 8.4×109 and 4.3×108 mL-1, increased by 291%, 265%and 87%, respectively, compared with the original culture. The bacterial total protein activity was improved by microwave and UV mutations, but was reduced by ultrasonic. Mutations had effects on bioleaching of gold ore in sequence of microwave〉UV〉ultrasonic. During gold ore bioleaching, the bacterial mutant after mutation by microwave had the best effect on the extraction rates of arsenic and iron, which were 19.6%and 17.7%higher than that of the original strain after bioleaching for 10 d, respectively. The results suggested that the effects of mutation on bioleaching of gold ore may not be mainly due to increase of bacterial cells density, but may be mainly attributed to the improvement of bacterial total protein activity.展开更多
基金Project (41271330) supported by the National Natural Science Foundation of China
文摘The effects of moderately thermophilic bacteria on the extraction of metals from zinc smelting slag and electrochemical characteristics of zinc smelting slag carbon paste electrode in bioleaching process were studied. The results show that the extraction rates of Fe, Cu and Zn from the slag reach 86.7%, 90.3% and 66.7% after adsorbed bacteria sterilize, while those with adsorbed bacteria are 91.9%, 96.0% and 84.5% in conditions of pulp density 2%, pH 1.0, temperature 65 °C and stirring rate 120 r/min, respectively. Some stretching peaks of functional groups from bacterial secretes on the bioleached residue surface, such as 1007 cm-1 and 1193 cm-1, turn up through FI-IR analysis and indirectly reveal the presence of the adsorbed bacteria on the slag particles surface. Besides, the corrosion of zinc smelting slag is enhanced by bacteria according to the characteristics of cyclic voltametry and Tafel curves in bioleaching system.
基金financial supports from the National Key R&D Program of China(No.2018YFC1801804)the Shandong Provincial Natural Science Foundation,China(Nos.ZR2020QD120 and ZR2018LD001)Project of Introducing and Cultivating Young Talent in the Universities of Shandong Province,China(No.QC2019YY144)。
文摘The column bioleaching of copper flotation tailings was comparatively investigated using layered heap construction method(LM),agglomerate heap construction method(AM),and pellets-sintering heap construction method(PM).The bacterial communities of free,attached,weakly-attached,and strongly-attached microbes in the later bioleaching stage were investigated.In AM group,the addition of lump sulphide ore resulted in the low leachate pH,high ferric iron concentration,and rapid microbial adsorption,which obtained the maximum copper extraction(60.1%)compared with LM(54.6%)and PM(43.9%)groups.The relative abundance of dominant genera and microbial communities of different microbiota underwent changes in three heap construction methods.The alpha-diversity indexes of attached,weakly-attached,and strongly-attached microbes were different,while no significant change was observed in free bacteria.The variation of whole bacterial community was significantly associated with solution pH,total iron,and ferric iron concentrations.Pearson correlation analysis and partial least square path model both indicated that attached bacteria made larger contribution to the copper extraction of tailings.
基金This work was financially supported by the National Natural Science Foundation of China(No.51874018)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2022-07).
文摘Vanadium and its derivatives are used in various industries,including steel,metallurgy,pharmaceuticals,and aerospace engineering.Although China has massive reserves of stone coal resources,these resources have low grades.Therefore,the effective extraction and recovery of metallic vanadium from stone coal is an important way to realize the efficient resource utilization of stone coal vanadium ore.Herein,Bacillus mucilaginosus was selected as the leaching strain.The vanadium leaching rate reached 35.5%after 20 d of bioleaching under optimal operating conditions.The cumulative vanadium leaching rate in the contact group reached 35.5%,which was higher than that in the noncontact group(9.3%).The metabolites of B.mucilaginosus,such as oxalic,tartaric,citric,and malic acids,dominated in bioleaching,accounting for 73.8%of the vanadium leaching rate.Interestingly,during leaching,the presence of stone coal stimulated the expression of carbonic anhydrase in bacterial cells,and enzyme activity increased by 1.335-1.905 U.Enzyme activity positively promoted the production of metabolite organic acids,and total organic acid content increased by 39.31 mg·L^(-1),resulting in a reduction of 2.51 in the pH of the leaching system with stone coal.This effect favored the leaching of vanadium from stone coal.Atomic force microscopy illustrated that bacterial leaching exacerbated corrosion on the surface of stone coal beyond 10 nm.Our study provides a clear and promising strategy for exploring the bioleaching mechanism from the perspective of microbial enzyme activity and metabolites.
文摘A two-stage process has been developed for stabilization of sludge and removal of heavy metals from the secondary activated sludge with high rate of energy and time conservation. The first stage of the process involves autoheated thermophilic aerobic digestion at 55-60℃ inoculated with less-acidophilic thermophilic sulfur-oxidizing microorganisms (ATAD). The results show that it is possible to maintain the autoheated conditions (55-60℃) in the ATAD reactor up to 24 hr, leading to reduction of 21% total solids (TS), 27% volatile solids (VS), 27% suspended solids (SS) and 33% volatile suspended solids (VSS) from the sludge. The sludge pH also decreased from 7 to 4.6 due to the activity of less-acidophilic thermophilic microorganisms. In the second stage operation, the digested sludge (pH 4.6, TS 31.6 g/L) from stage one was subjected to bioleaching in a continuous stirred tank reactor, operated at mean hydraulic retention times (HRTs) of 12, 24 and 36 hr at 30℃. An HRT of 24 hr was found to be sufficient for removal of 70% Cu, 70% Mn, 75% Ni, and 80% Zn from the sludge. In all, 39% VSS, 76% Cu, 78.2% Mn, 79.5% Ni and 84.2% Zn were removed from the sludge in both the stages.
基金financially supported by the National Natural Science Foundation of China (Nos. 51404031 and U1608254)
文摘Accumulation of toxic ions in leachate is one factor limiting bioleaching applications. The effect of fluoride ions on the growth of bioleaching microorganisms has been extensively emphasized. In this study, HF is found to be the toxic form of fluoride that affects the bacterial activity under acidic conditions. The added aluminum could compete with H^+ to complex with F-, thus significantly decrease the concentration of HF and finally reduce the toxicity of fluoride to bacteria. When F^-/Al^(3+)concentration ratio is 0.5:1.0, Fe^(2+) oxidation rate could reach 0.167 g·L^(-1)·h^(-1), close to that of the biotic control group(0.195 g·L^(-1)·h^(-1)). The competitive complexation mechanism of fluoride by AlF_n^(3-n) results in stability constants of AlF_n^(3-n) complex(7.00) that are larger than those of HF(3.18). The F^-/Al^(3+) concentration ratio in the medium could affect the speciation of AlF_n^(3-n) complex.With the decrease in F^-/Al^(3+) concentration ratio, the coordination numbers of AlF_n^(3-n) decrease. Finally, the feasibility of fluoride detoxification by aluminum ion is verified. This work has meaningful implications for fluoride-containing bacterial bioleaching systems.
基金supported by the National Natural Science Foundation of China(No.51874018)。
文摘The recovery of vanadium(V)from stone coal by bioleaching is a promising method.The bioleaching experiments and the biosorption experiments were carried out,aiming to explore the adsorption characteristics of Bacillus mucilaginosus(B.mucilaginosus)on the surface of vanadium-bearing stone coal,and the related mechanisms have been investigated.After bioleaching at 30℃ for 28 d,the cumulative leaching rate of V reached 60.2%.The biosorption of B.mucilaginosus on stone coal was affected by many factors.When the pH value of leaching system is 5.0,strong electrostatic attraction between bacteria and stone coal promoted biosorption.Bacteria in the logarithmic growth phase had mature and excellent biosorption properties.The initial bacterial concentration of 3.5×10^(8) CFU/mL was conducive to adhesion,with 38.9%adsorption rate and 3.6×10^(7) CFU/g adsorption quantity.The adsorption of B.mucilaginosus on the stone coal conformed to the Freundlich model and the pseudo-second-order kinetic model.Bacterial surface carried functional groups(-CH_(2),-CH_(3),-NH_(2),etc.),which were highly correlated with the adsorption behavior.In addition,biosorption changed the surface properties of stone coal,resulting in the isoelectric point(IEP)approaching the bacteria.The results could provide an effective reference for the adsorption laws of bacteria on minerals.
基金Project(2010CB630904) supported by the National Basic Research Program of ChinaProject(50621063) supported by the Chinese Science Foundation for Distinguished Group
文摘The changes of pH,redox potential,concentrations of soluble iron ions and Cu^2+ with the time of bioleaching chalcopyrite concentrates by acidithiobacillus ferrooxidans were investigated under the different conditions of initial total-iron amount as well as mole ratio of Fe(III) to Fe(II) in the solutions containing synthetic extracellular polymeric substances (EPS).When the solution potential is lower than 650 mV (vs SHE),the inhibition of jarosites to bioleaching chalcopyrite is not vital as EPS produced by bacteria can retard the contamination through flocculating jarosites even if concentration of Fe(III) ions is up to 20 g/L but increases with increasing the concentration of Fe(III) ions;jarosites formed by bio-oxidized Fe3+ ions are more easy to adhere to outside surface of EPS space on chalcopyrite;the EPS layer with jarosites acts as a weak diffusion barrier to further rapidly create a high redox potential of more than 650 mV by bio-oxidizing Fe^2+ ions inside and outside EPS space into Fe^3+ ions,resulting in a rapid deterioration of ion diffusion performance of the EPS layer to inhibit bioleaching chalcopyrite severely and irreversibly.
基金Project(50621063) supported by the National Natural Science Foundation of ChinaProject(2010CB630903) supported by the National Basic Research Program of China
文摘The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction mechanism of Cu2+,Fe3+ and EPS during bioleaching chalcopyrite.Generally,Cu2+ ions can stimulate bacteria to produce more EPS than Fe3+ ions.The mass ratio of Fe3+/Cu2+ enclosed in EPS decreased gradually from about 4:1 to about 2:1 when the concentration of Cu2+ ions increased from 0.01 to 0.04 mol/L.The amount of iron and copper bound together by EPS in ferrous-free 9K medium containing 1% chalcopyrite was about 2 times of that in 9K medium containing 0.04 mol/L Cu2+ ions.It was inferred that the EPS with jarosites on the surface of chalcopyrite gradually acted as a weak diffusion barrier for Cu2+,Fe3+ ions transference during bioleaching chalcopyrite.
基金Project (2010CB630903) supported by the National Basic Research Program of China
文摘The electrochemical oxidation behavior of pyrite in bioleaching system of Acidthiobacillusferrooxidans was investigated by cyclic voltammetry (CV), polarization curve and electrochemical impedance spectroscopy (EIS). The results show that in the presence or absence of A. ferrooxidans, the oxidation reaction of pyrite is divided into two steps: the first reaction step involves the oxidation of pyrite to S, and the second reaction step is the oxidation of S to SO4^2-. The oxidation mechanism of pyrite is not changed in the presence of A. ferrooxidans, but the oxidation rate of pyrite is accelerated. With the extension of reaction time of A. ferrooxidan with pyrite, the polarization current density of pyrite increases and the breakdown potential at which the passive film dissolves decreases. The impedance in the presence ofA. ferrooxidans is obviously lower than that in the absence of A. ferrooxidans, further indicating that microorganism accelerates the corrosion process of pyrite.
文摘Extracellular polymeric substances (EPS) produced by acidophilic bioleaching microorganisms play an important role in the production of acid mine drainage and metal sulfide bioleaching. EPS mediate the contact between microbial cells and growth substrates, having a pivotal role in organic film formation and bacterium-substratum interactions. The production and chemical composition of EPS produced by seven bioleaching strains grown with different substrates were studied. Analysis of the EPS extracted from these strains indicated that the EPS consisted of carbohydrates, proteins and galacturonic acid. The contents of EPS, carbohydrates, proteins and galacturonic acid of EPS were largely related to the kind of strain used and culture condition. The results show that EPS productions of microbes grown with pyrite were significantly higher than those of microbes grown with sulfur or FeSO4·7H2O. The highest EPS production of the seven acidiphilic strains was (159.43±3.93) mg/g, which was produced by Leptospirillum ferriphilum CBCBSUCSU208015 when cultivated with pyrite.
基金Projects (51174062, 51104036, 50874030) supported by the National Natural Science Foundation of ChinaProjects (2012AA061502) supported by the High-tech Research and Development Program of ChinaProjects (N100602007) supported by the Fundamental Research Funds for the Central Universities, China
文摘Passivation is a common phenomenon on the surface of chalcopyrite in the process of bioleaching. The ordinary leaching and strengthening leaching by adding glass beads were carried out. The results show that the passivation of chalcopyrite was greatly weakened in strengthening leaching due to the change of leaching conditions. The copper leaching efficiency was increased from 50% to 89.8% through adding beads. The SEM and X-ray diffraction (XRD) analyses illustrate that there are few jarosite precipitates and weak passivation on the surface of chalcopyrite in strengthening leaching. In contrast, there are thick and compact jarosite precipitate and obvious passivation in ordinary leaching, which hinders further dissolution of chalcopyrite.
基金Project(50974140) supported by the National Natural Science Foundation of ChinaProject(20090162110054) supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The apparent sulfur oxidation activities of four pure thermophilic archaea, Acidianus brierleyi (JCM 8954), Metallosphaera sedula (YN 23), Acidianus manzaensis (YN 25) and Sulfolobus metallicus (YN 24) and their mixture in bioleaching chalcopyrite were compared, which were characterized indirectly by the evolution of the cells concentration, pH value and sulfate ions concentration in solution. The results show that the mixed culture contributed significantly to the raising of leaching rate, which suggests that the mixed culture had a higher sulfur oxidation activity than the pure culture. Meanwhile, the results also indicate that the changes of parameters characterizing the sulfur oxidation activity of thermophilic archaea are often influenced by many factors, so it is hard to reflect accurately the specific sulfur oxidation activities among the different sulfur-oxidizing microbes when bioleaching chalcopyrite at different conditions. Accordingly, an efficient method to characterize microbial sulfur oxidation activity appears to be desirable.
基金Project (51374248) supported by the National Natural Science Foundation of ChinaProject (NCET-13-0595) supported by the Program for New Century Excellent Talents in University,China+3 种基金Project (2012AA061501) supported by the High-tech Research and Development Program of ChinaProject (2010CB630905) supported by the National Basic Research Program of ChinaProject (20120162120010) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject (CSUZC2012020) supported by the Open-End Fund for the Valuable in Central South University,China
文摘The variation of microbial community structure was investigated for the tank bioleaching process of Pb-Zn-Sn chalcopyrite concentrate in the presence of mixed moderately thermophilic bacteria. The parameters, such as pH value, solution potential and concentrations of metal ions, were determined by the method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze the succession of microbial community. The results showed that a final copper extraction rate of 85.6% could be obtained after tank bioleaching for 30 d. The Acidithiobacillus caldus was the dominant population with abundance of about 73.80%in the initial stage, then Sulfobacillus thermosulfidooxidans dominated from the 18th day to the end of bioleaching, while the abundance of Leptospirillum ferriphilum changed slightly. A higher solution potential within a certain range and appropriate concentration of ferric ions were essential for this tank bioleaching of chalcopyrite.
基金Project(50774102)supported by the National Natural Science Foundation of ChinaProject(2004CB619204)supported by the National Basic Research Program of China
文摘To screen the high efficient mixed culture and understand the bioleaching behaviors of mixed culture for low-grade copper sulfide ore bioleaching,ten mixed cultures were collected and screened from different acid mine drainages obtained from sulfide mines of China.The leaching rate was set as criterion to screen the mixed culture and the metagenomic approach.Community genome array(CGA) was used for analyzing the mixed culture microbial community shift during the bioleaching process.The results indicate that the mixed culture obtained from Yinshan(YS) lead-zinc mine in Dexing of Jiangxi province in China reaches the maximum copper extraction(68.89%) during the one bioleaching period of 24 d.CGA results show that YS culture contains nine kinds of bacteria which are belong to six divisions,and the microbial community structure is changing during the bioleaching process.This provides a good way to accelerate the bioleaching process and reveals the microbial community shift during the bioleaching process.
基金Project (2012zzts026) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (201205020) supported by Scientific Research Program of Marine Public Welfare Industry of China+2 种基金Project (51074195) supported by the National Natural Science Foundation of ChinaProject (CX2012B123) supported by Research Innovation for Graduate Student of Hunan Province,ChinaProject (12C517) supported by Education Department of Hunan Province,China
文摘Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated that the copper extraction at pH 1.5 was 1.5 and 1.4 times that at pH 1.0 and pH 2.0 respectively. The copper extraction obtained at 45 ℃ was 1236.8%higher than that at 50 ℃. With the increase of rotation speed or the decrease of liquid volume, copper extraction was improved obviously. Copper extraction was improved gradually with the increase of pyrite ratio. However, when the ratio was higher than 20.0%, no further increase in copper extraction was observed. And the statistically significant interactive effects on copper extraction were found between temperature and pH, and temperature and pyrite ratio.
基金Projects(51374248,51320105006)supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595)supported by the Program for New Century Excellent Talents in University,ChinaProject(2014T70692)supported by China Postdoctoral Science Foundation
文摘X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses were carried out to investigate the surface species and interfacial reactions during bioleaching of chalcopyrite by different strains of moderately thermophilic bacteria (45 °C). Results show that monosulfide (CuS), disulfide (S22?), polysulfide (Sn2?), elemental sulfur (S0) and sulfate (SO42?) are the main intermediate species on the surface of chalcopyrite during bioleaching byA. caldus,S. thermosulfidooxidans andL. ferriphilum. The low kinetics of dissolution of chalcopyrite inA. caldus can be mainly attributed to the incomplete dissolution of chalcopyrite and the passivation layer of polysulfide. Polysulfide and jarosite should be mainly responsible for the passivation of chalcopyrite in bioleaching byL. ferriphilumorS. thermosulfidooxidans. However, elemental sulfur should not be the main composition of passivation layer of chalcopyrite during bioleaching.
基金Projects(51174239,30700008)supported by the National Natural Science Foundation of ChinaProjects(20090461028,201003526)supported by China Postdoctoral Science Foundation
文摘Bioleaching Xiangjiang River alkaline sediment contaminated by multiple heavy metals was investigated. Multiple metals in alkaline sediment possess significant toxicity to aquatic organisms or humans and will greatly inhibit bioleaching. The bioleaching method using autotrophic bacteria mixed with heterotrophic bacteria can solve this problem successfully. The experiment results showed that bioleaching efficiencies of Zn, Mn, Cu, and Cd were 95.2 %, 94.2 %, 90.1 %, and 84.4 %, respectively. Moreover, the changes of heavy metal concentrations in different fractions in contaminated sediment before and after bioleaching were analyzed by selective sequential extraction, and it was discovered that the main fractions of Zn, Mn, Cu and Cd after bioleaching are Fe-Mn oxide, organic associated form and a residual form. Its biotoxicity decreased greatly. The bioleaching heavy metals from sediment using autotrophic bacteria combined with heterotrophic bacteria can effectively improve the bioleaching efficiency and reduce toxicity.
基金Project(U1232103)supported by the Joint Funds of National Natural Science Foundation of China and Large Scientific Facility Foundation of Chinese Academy of SciencesProject(51274257)supported by the National Natural Science Foundation of China+2 种基金Project(CX2014B092)supported by Hunan Provincial Innovation Foundation For Postgraduate,ChinaProject(VR-12419)supported by Beijing Synchrotron Radiation Facility Public User Program,ChinaProjects(13SRBL15U13024,13SRBL14B13023)supported by the Open Funds of Shanghai Synchrotron Radiation Facility,China
文摘The formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea Acidianus manzaensis were analyzed by combining synchrotron radiation X-ray diffraction(SR-XRD) and S, Fe and Cu Kα X-ray absorption near edge structure(XANES) spectroscopy. Leaching experiment showed that 82.4% of Cu2+ was dissolved by A. manzaensis after 10 d. The surface of chalcopyrite was corroded apparently and covered with leaching products. During bioleaching, the formation and evolution of secondary minerals were as follows: 1) little elemental sulfur, jarosite, bornite and chalcocite were found at days 2 and 4; and 2) bornite and chalcocite disappeared, covellite formed, and jarosite gradually became the main component at days 6 and 10. These results indicated that metal-deficiency sulfides chalcocite and bornite were first formed with a low redox potential value(360-461 m V), and then gradually transformed to covellite with a high redox potential value(461-531 m V).
基金Project(2012AA061502)supported by the National High-tech Research and Development Program of ChinaProjects(51374066,51304047)supported by the National Natural Science Foundation of ChinaProject(2012223002)supported by Industrial Research Projects in Liaoning Province,China
文摘The function of microorganism and dissolution reaction pathway of carrollite in the bioleaching process were investigated. The results showed that both indirect and contact mechanisms influenced the leaching process. The dissolution of carrollite was significantly accelerated when bacteria were adsorbed on the mineral surface, indicating that the contact mechanism significantly affected the dissolution of carrollite. During bioleaching, the sequence of oxidation state of the sulfur moiety of carrollite was as follows: S?2→S0→S+4→S+6. Elemental sulfur precipitated on the mineral surface, indicating that the dissolution of carrollite occurred via the polysulfide pathway. The surface of carrollite was selectively corroded by bacteria, and oxidation pits with different sizes were observed at various sites. Elemental sulfur, sulfate and sulfite were present on the surface of carrollite during the leaching process, and may have formed a passivation layer on mineral surface.
基金Project(41073060)supported by the National Natural Science Foundation of ChinaProject(12ZR1440400)supported by the Shanghai Natural Science Foundation of Youth,China+1 种基金Project(B604)supported by the Shanghai Leading Academic Discipline,ChinaProject supported by the State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry,China
文摘Leptospirillum ferriphilum YXW was isolated through serial dilution from mixed microorganisms enriched in AMD from Dexing copper mine in Jiangxi Province, China. It was mutated by ultrasonic, UV and microwave to collect more efficient strain for bioleaching of gold ore. Physiological and biochemical characteristics indicate that strain YXW is a strict chemoautotrophic microorganism, and the optimal condition for its growth is temperature of 40 °C and pH 1.5. After mutation by ultrasonic, UV and microwave, the density of bacterial cells reached 9×109, 8.4×109 and 4.3×108 mL-1, increased by 291%, 265%and 87%, respectively, compared with the original culture. The bacterial total protein activity was improved by microwave and UV mutations, but was reduced by ultrasonic. Mutations had effects on bioleaching of gold ore in sequence of microwave〉UV〉ultrasonic. During gold ore bioleaching, the bacterial mutant after mutation by microwave had the best effect on the extraction rates of arsenic and iron, which were 19.6%and 17.7%higher than that of the original strain after bioleaching for 10 d, respectively. The results suggested that the effects of mutation on bioleaching of gold ore may not be mainly due to increase of bacterial cells density, but may be mainly attributed to the improvement of bacterial total protein activity.