Biological reference point(BRP)is one of the essential components in the management strategy evaluation that is used to determine the status of fishery stock and set management regulations.However,as BRPs can be deriv...Biological reference point(BRP)is one of the essential components in the management strategy evaluation that is used to determine the status of fishery stock and set management regulations.However,as BRPs can be derived from different models and many different BRPs are available,the effectiveness and consistency of different BRPs should be evaluated before being applied to fisheries management.In this study,we used a computation-intensive approach to identify optimal BRPs.We systematically evaluated 1500 combinations of alternative BRPs in managing the bigeye tuna(Thunnus obesus)and yellowfin tuna(Thunnus albacares)fisheries in the Indian Ocean.The effectiveness and consistency of these BRPs were evaluated using four performance measures related to fisheries landing performance and biomass conservation.Monte Carlo simulation was used to evaluate various uncertainties.The results suggest that the proposed computation-intensive approach can be effective in identifying optimal BRPs with respect to a set of defined performance measures.We found that the current maximum sustainable yield(MSY)-based BRP combinations are effective target BRPs to manage the bigeye and yellowfin tuna fisheries with the“linear”harvest control rule(HCR).However,using the“knife-edge”HCR,better BRPs could be found for both the bigeye and yellowfin tuna fisheries management with improved fisheries and conservation performance.The framework developed in this study can be used to identify suitable BRPs based on a set of defined performance measures for other fisheries.展开更多
Anchovy(Engraulis japonicus) is an abundant fish species in the Yellow Sea,and its natural stock is decreasing rapidly in recent years. Based on the stock-recruitment(SR) data from 1987 to 2002 published in Zhao et al...Anchovy(Engraulis japonicus) is an abundant fish species in the Yellow Sea,and its natural stock is decreasing rapidly in recent years. Based on the stock-recruitment(SR) data from 1987 to 2002 published in Zhao et al.(2003),the criterion BIC(Bayesian Information Criterion) is applied to selecting a suitable model from six normal and lognormal error structured SR statisti-cal models,the age-structured model is used to calculate the biological reference points(BRPs),and the precision of the SR parame-ters and BRPs are calculated using bootstrap method. The results indicate that the anchovy fishery resource in the Yellow Sea is in an over-fished state. The precaution management principle requires that the fishery should be closed immediately.展开更多
A continuous time delay-difference model(CTDDM) has been established that considers continuous time delays of biological processes.The southern Atlantic albacore(Thunnus alalunga) stock is the one of the commercially ...A continuous time delay-difference model(CTDDM) has been established that considers continuous time delays of biological processes.The southern Atlantic albacore(Thunnus alalunga) stock is the one of the commercially important tuna population in the marine world.The age structured production model(ASPM) and the surplus production model(SPM) have already been used to assess the albacore stock.However,the ASPM requires detailed biological information and the SPM lacks the biological realism.In this study,we focus on applying a CTDDM to the southern Atlantic albacore(T.alalunga) species,which provides an alternative method to assess this fishery.It is the first time that CTDDM has been provided for assessing the Atlantic albacore(T.alalunga) fishery.CTDDM obtained the 80%confidence interval of MSY(maximum sustainable yield) of(21 510 t,23 118 t).The catch in 2011(24 100 t) is higher than the MSY values and the relative fishing mortality ratio(F_(2011)/F_(MSY)) is higher than 1.0.The results of CTDDM were analyzed to verify the proposed methodology and provide reference information for the sustainable management of the southern Atlantic albacore stock.The CTDDM treats the recruitment,the growth,and the mortality rates as all varying continuously over time and fills gaps between ASPM and SPM in this stock assessment.展开更多
基金This project is financially supported by the Shanghai Ocean University International Center for Marine Sciences and Innovation Program of Shanghai Municipal Education Commission(12YZ134).
文摘Biological reference point(BRP)is one of the essential components in the management strategy evaluation that is used to determine the status of fishery stock and set management regulations.However,as BRPs can be derived from different models and many different BRPs are available,the effectiveness and consistency of different BRPs should be evaluated before being applied to fisheries management.In this study,we used a computation-intensive approach to identify optimal BRPs.We systematically evaluated 1500 combinations of alternative BRPs in managing the bigeye tuna(Thunnus obesus)and yellowfin tuna(Thunnus albacares)fisheries in the Indian Ocean.The effectiveness and consistency of these BRPs were evaluated using four performance measures related to fisheries landing performance and biomass conservation.Monte Carlo simulation was used to evaluate various uncertainties.The results suggest that the proposed computation-intensive approach can be effective in identifying optimal BRPs with respect to a set of defined performance measures.We found that the current maximum sustainable yield(MSY)-based BRP combinations are effective target BRPs to manage the bigeye and yellowfin tuna fisheries with the“linear”harvest control rule(HCR).However,using the“knife-edge”HCR,better BRPs could be found for both the bigeye and yellowfin tuna fisheries management with improved fisheries and conservation performance.The framework developed in this study can be used to identify suitable BRPs based on a set of defined performance measures for other fisheries.
基金This work is supported by the National Basic Research Program of China(No.2005CB422306,973 program)National Natural Science Foundation of China(30271025).
文摘Anchovy(Engraulis japonicus) is an abundant fish species in the Yellow Sea,and its natural stock is decreasing rapidly in recent years. Based on the stock-recruitment(SR) data from 1987 to 2002 published in Zhao et al.(2003),the criterion BIC(Bayesian Information Criterion) is applied to selecting a suitable model from six normal and lognormal error structured SR statisti-cal models,the age-structured model is used to calculate the biological reference points(BRPs),and the precision of the SR parame-ters and BRPs are calculated using bootstrap method. The results indicate that the anchovy fishery resource in the Yellow Sea is in an over-fished state. The precaution management principle requires that the fishery should be closed immediately.
基金Supported by the Special Fund of Chinese Central Government for Basic Scientific Research Operations in Commonweal Research Institutes(No.201022001)
文摘A continuous time delay-difference model(CTDDM) has been established that considers continuous time delays of biological processes.The southern Atlantic albacore(Thunnus alalunga) stock is the one of the commercially important tuna population in the marine world.The age structured production model(ASPM) and the surplus production model(SPM) have already been used to assess the albacore stock.However,the ASPM requires detailed biological information and the SPM lacks the biological realism.In this study,we focus on applying a CTDDM to the southern Atlantic albacore(T.alalunga) species,which provides an alternative method to assess this fishery.It is the first time that CTDDM has been provided for assessing the Atlantic albacore(T.alalunga) fishery.CTDDM obtained the 80%confidence interval of MSY(maximum sustainable yield) of(21 510 t,23 118 t).The catch in 2011(24 100 t) is higher than the MSY values and the relative fishing mortality ratio(F_(2011)/F_(MSY)) is higher than 1.0.The results of CTDDM were analyzed to verify the proposed methodology and provide reference information for the sustainable management of the southern Atlantic albacore stock.The CTDDM treats the recruitment,the growth,and the mortality rates as all varying continuously over time and fills gaps between ASPM and SPM in this stock assessment.