Biological soil crusts(BSCs)play crucial roles in improving soil fertility and promoting plants settlement and reproduction in arid areas.However,the specific effects of BSCs on growth status and nutrient accumulation...Biological soil crusts(BSCs)play crucial roles in improving soil fertility and promoting plants settlement and reproduction in arid areas.However,the specific effects of BSCs on growth status and nutrient accumulation of plants are still unclear in different arid areas.This study analyzed the effects of three different BSCs treatments(without crust(WC),intact crust(IC),and broken crust(BC))on the growth,inorganic nutrient absorption,and organic solute synthesis of three typical desert plants(Grubovia dasyphylla(Fisch.&C.A.Mey.)Freitag&G.Kadereit,Nitraria tangutorum Bobrov,and Caragana koraiensis Kom.)in the Minqin desert-oasis ecotone of Northwest China.Results showed that the effects of three BSCs treatments on seed emergence and survival of three plants varied with seed types.The IC treatment significantly hindered the emergence and survival of seeds,while the BC treatment was more conducive to seed emergence and survival of plants.BSCs significantly promoted the growth of three plants,but their effects on plant growth varied at different stages of the growth.Briefly,the growth of G.dasyphylla was affected by BSCs in early stage,but the effects on the growth of G.dasyphylla significantly weakened in the middle and late stages.However,the growth of N.tangutorum and C.koraiensis only showed differences at the middle and late stages,with a significant enhancement in growth.Analysis of variance showed that BSCs,plant species,growth period,and their interactions had significant effects on the biomass and root:shoot ratio of three plants.BSC significantly affected the nutrients absorption and organic solute synthesis in plants.Specifically,BSCs significantly promoted nitrogen(N)absorption in plants and increased plant adaptability in N poor desert ecosystems,but had no significant effects on phosphorus(P)absorption.The effects of BSCs on inorganic nutrient absorption and organic solute synthesis in plants varied significantly among different plant species.The results suggest that BSCs have significant effects on the growth and nutrient accumulation of desert plants,which will provide theoretical basis for exploring the effects of BSCs on desert plant diversity,biodiversity conservation,and ecosystem management measures in arid and semi-arid areas.展开更多
介绍了生物土壤结皮遥感光谱特性和遥感监测方法研究进展。主要论述了生物土壤结皮光谱的变异性与土壤水分的关系,分析了生物结皮对区域植被遥感解译的影响。干湿生物结皮的光谱差异以及土壤浅表层水分的更替会造成植被动态的错误解译...介绍了生物土壤结皮遥感光谱特性和遥感监测方法研究进展。主要论述了生物土壤结皮光谱的变异性与土壤水分的关系,分析了生物结皮对区域植被遥感解译的影响。干湿生物结皮的光谱差异以及土壤浅表层水分的更替会造成植被动态的错误解译和生态系统生产力的过高估计,经研究得出,100%盖度的干湿苔藓结皮NDVI之差大约0.35(干苔藓结皮0.30,而湿苔藓结皮0.65),100%盖度干湿藻类结皮NDVI之差大约0.15(干藻类结皮0.15,而湿藻类结皮0.30),最大值合成法(max value composite,MVC)会使分布有相当盖度的苔藓结皮的区域的NDVI求解受降水的影响很大,会造成该区域短时间内NDVI不稳定性,而影响植被动态解译。综合国内外研究认为,生物结皮研究中,除了考虑不同土壤水分下生物结皮的光谱外,还应考虑生物结皮光谱的季节差异。展开更多
基金supported by the Natural Science Foundation of Gansu Province,China(24JRRA733,23JRRA589)the National Natural Science Foundation of China(42377470,42207539)the Light of Western Light Program of Talent Cultivation of Chinese Academy of Sciences(22JR9KA028).
文摘Biological soil crusts(BSCs)play crucial roles in improving soil fertility and promoting plants settlement and reproduction in arid areas.However,the specific effects of BSCs on growth status and nutrient accumulation of plants are still unclear in different arid areas.This study analyzed the effects of three different BSCs treatments(without crust(WC),intact crust(IC),and broken crust(BC))on the growth,inorganic nutrient absorption,and organic solute synthesis of three typical desert plants(Grubovia dasyphylla(Fisch.&C.A.Mey.)Freitag&G.Kadereit,Nitraria tangutorum Bobrov,and Caragana koraiensis Kom.)in the Minqin desert-oasis ecotone of Northwest China.Results showed that the effects of three BSCs treatments on seed emergence and survival of three plants varied with seed types.The IC treatment significantly hindered the emergence and survival of seeds,while the BC treatment was more conducive to seed emergence and survival of plants.BSCs significantly promoted the growth of three plants,but their effects on plant growth varied at different stages of the growth.Briefly,the growth of G.dasyphylla was affected by BSCs in early stage,but the effects on the growth of G.dasyphylla significantly weakened in the middle and late stages.However,the growth of N.tangutorum and C.koraiensis only showed differences at the middle and late stages,with a significant enhancement in growth.Analysis of variance showed that BSCs,plant species,growth period,and their interactions had significant effects on the biomass and root:shoot ratio of three plants.BSC significantly affected the nutrients absorption and organic solute synthesis in plants.Specifically,BSCs significantly promoted nitrogen(N)absorption in plants and increased plant adaptability in N poor desert ecosystems,but had no significant effects on phosphorus(P)absorption.The effects of BSCs on inorganic nutrient absorption and organic solute synthesis in plants varied significantly among different plant species.The results suggest that BSCs have significant effects on the growth and nutrient accumulation of desert plants,which will provide theoretical basis for exploring the effects of BSCs on desert plant diversity,biodiversity conservation,and ecosystem management measures in arid and semi-arid areas.
文摘介绍了生物土壤结皮遥感光谱特性和遥感监测方法研究进展。主要论述了生物土壤结皮光谱的变异性与土壤水分的关系,分析了生物结皮对区域植被遥感解译的影响。干湿生物结皮的光谱差异以及土壤浅表层水分的更替会造成植被动态的错误解译和生态系统生产力的过高估计,经研究得出,100%盖度的干湿苔藓结皮NDVI之差大约0.35(干苔藓结皮0.30,而湿苔藓结皮0.65),100%盖度干湿藻类结皮NDVI之差大约0.15(干藻类结皮0.15,而湿藻类结皮0.30),最大值合成法(max value composite,MVC)会使分布有相当盖度的苔藓结皮的区域的NDVI求解受降水的影响很大,会造成该区域短时间内NDVI不稳定性,而影响植被动态解译。综合国内外研究认为,生物结皮研究中,除了考虑不同土壤水分下生物结皮的光谱外,还应考虑生物结皮光谱的季节差异。