The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anae...The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anaerobic incubation method (CFANIM) and chloroform fumigation-extraction method (CFEM).The N taken up by ryegrass on the soils was determined after a glasshouse pot experiment. The flushes of nitrogen (FN) of the soils obtained by the CFAIM and CFANIM were higher than that by the CFEM, and there were significantly positive correlations between the FN obtained by the 3 methods. The N extracted from the fumigated soils by the CFAIM, CFANIM and CFEM were significantly positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the plant N uptake. The contributions of the SMBN and mineral N and mineralized N during the incubation period to plant N uptake were evaluated with the multiple regression method. The results showed that the N contained in the soil microbial biomass might play a noticeable role in the N supply of the soils to the plant.展开更多
The effect of ammonium fixation on the estimation of soil microbial biomass N was studied bv thestandard fumigation-incubation (FI) and fumigation-extraction (FE) methods. NO_3-N content of fumigatedsoil changed littl...The effect of ammonium fixation on the estimation of soil microbial biomass N was studied bv thestandard fumigation-incubation (FI) and fumigation-extraction (FE) methods. NO_3-N content of fumigatedsoil changed little during incubation, while the fixed NH in soils capable of fixing NH increased withthe increase of K_2SO_4-extractable NH_4-N. One day fumigation increased both extractable NH and fixedNH. However, prolonged fumigation gave no further increase. One day fumigation caused significant loss ofNO_3-N, while prolonged fumigation caused no further loss. For soils tested, the net increases of fixed NHin fumigated soil equaled to 0-94% of NH_4-N flush measured by the FI method, and 1-74% of extractable Nmeasured by the FE method, depending on different soils. It is concluded that the ammonium fixation wasone of the processes taking place in soils during fumigation as well as incubation after fumigation and shouldnot be neglected in the estimation of microbial biomass nitrogen by either FI or FE method.展开更多
Two soils with relatively high (Soil 1) and low (Soil 2) ammonium fixation capacities were used in thisstudy to extalne the effect of ammonium fixation on the determination of N mineralised from soil ndcrobialbiomass....Two soils with relatively high (Soil 1) and low (Soil 2) ammonium fixation capacities were used in thisstudy to extalne the effect of ammonium fixation on the determination of N mineralised from soil ndcrobialbiomass. organism suspellsioll was quantitatively introduced to Soil 1 at various rates. Both fumigation-incubation (FI) and fumigation-ext raction (FE ) met hods were used to t reat t he soil. The amount of ffeedNH4+-N increased with increasing rate of organism-N addition. A close correlation was found between theamoun of fixed aznmonium and the rate of organism-N addition. The net increso of fixed NH4+-N wereequivalent to 38% and 12% of the added organism-N for FI and FE treatments, respectively in this specificsoil. To provide isotopic evidence, 15N-labelled organism-N was added to Soils 1 and 2 at 121.4 mg N kg-1.In FI treatment, 22 and 3 mg N kg-1 of labelled N were found in the fraction of fixed NH4+-N in Soils 1 and2 respectively; while in FE treatment, 9 mg N kg-1 of labelled N was found in the fraction of fixed NH4+-Nin Soil 1 only. There was no labelled N in the fraction of fixed NH4+-N in Soil 2. In all of the unfumigated(check) soils, there was little or no labelled N in the fixed fractions, probably because the organism-N addedwas easily mineralized and nitrified. A mean of 0.64 for KN value, the fraction of N ndneralized in the killedmicrobial biomass, was obtained with inclusion of the net increase of fixed NH4+-N. The corresponding valuecalculated with exclusion of the net increase of fixed NH4+-N was 0.46. It was concluded that ammniumfixation was a problem in determination of KN, particularly for soils with a high ammonium fixation capacity.Results also showed that microbial biomass N measurement by FE method was less affected by ammoniumprocess than that by FI method.展开更多
The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of ric...The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of rice pot culture experiment shows that low concentration of La has slight stimulative effect on the microbial biomass C and N in red soil, but its high concentration has inhibitory effect and the inhibition is strengthened with increasing concentration of La. Soil microbial biomass is an important indicator for evaluating rare earths-polluted soil. It is assumed that the critical La concentration is 100 mg.kg(-1) at which red soil tends to be polluted.展开更多
A laboratory incubation experiment was conducted to study the effect of chlorsulfuron herbicide on the size of the microbial in loamy sand soil. The herbicide was applied, at four levels that were control, field rate ...A laboratory incubation experiment was conducted to study the effect of chlorsulfuron herbicide on the size of the microbial in loamy sand soil. The herbicide was applied, at four levels that were control, field rate 0\^01 (FR), 0\^1 (10FR) and 1 (100FR) μg/g. Determinations of microbial biomass C content and microbial biomass N content were carried out 1, 3, 5, 7, 10, 15, 25 and 45 days after herbicide application. In comparison to untreated soil, the microbial biomass carbon and biomass nitrogen decreased significantly in soil treated with herbicide in levels 10FR and 100FR within the first 10 days incubation. A more considerable increase in the microbial biomass C∶N ratio was observed in the herbicide treated soil than the non treated control. This effect was transitory and only at the higher rates of chlorsulfuron was significant.展开更多
High anthropogenic N loads and abundant bacteria are characteristic of highly contaminated urban rivers.To better understand the dispersal and accumulation of bacteria, we determined contents and isotopic compositions...High anthropogenic N loads and abundant bacteria are characteristic of highly contaminated urban rivers.To better understand the dispersal and accumulation of bacteria, we determined contents and isotopic compositions of suspended particulate organic matter(SPOM) and bacteria in a highly contaminated urban river(the Nanming)and effluents in winter and summer of 2013. Relative to SPOM, bacterial biomass in the river was depleted in ^(13)C and ^(15)N and its C/N ratio was lower(δ^(13)C:-33.2% ± 3.1%; δ^(15)N:-1.5% ± 1.2%; C/N:4.8 ± 0.6), while effluents showed higher ^(13)C and ^(15)N contents and C/N ratios(δ^(13)C:-25% ± 2.1%; δ ^(15)N:-8.5% ± 1.1%; C/N: 8.1 ± 1.2). Source recognition of SPOM was based on carbon isotopes because they are conservative and distinct between end-members(effluent detritus and bacterial biomass). Using a mixing model,bacterial biomass in the river was calculated to account for <20% and <56% of bulk suspended particulate organic nitrogen in winter and summer, respectively. An N budget showed that bacterial N was a small proportion of total nitrogen(<7.4%) in the riverwater.展开更多
In forage grasses, the nitrogen concentration is directly related to the nutritional value. The studies examined the hypothesis that global elevation of CO2 concentration probably affects the biomass, nitrogen (N) c...In forage grasses, the nitrogen concentration is directly related to the nutritional value. The studies examined the hypothesis that global elevation of CO2 concentration probably affects the biomass, nitrogen (N) concentration, and allocation and distribution patterns in the organs of forage grasses. While sainfoin (Onobrychis viciaefolia Scop.) seedlings grew on a low nutrient soil in closed chambers for 90 days, they were exposed to two CO2 concentrations (ambient or ambient+350 μmol mol^-1 CO2) without adding nutrients to them. After 90 days exposure to CO2, the biomasses of leaves, stems, and roots, and N concentrations and contents of different parts were measured. Compared with the ambient CO2 concentration, the elevated CO2 concentration increased the total dry matter by 25.07%, mainly due to the root and leaf having positive response to the elevated CO2 concentration. However, the elevated CO2 concentration did not change the proportions of the dry matters in different parts and the total plants compared with the ambient CO2 concentration. The elevated CO2 concentration lowered the N concentrations of the plant parts. Because the dry matter was higher, the elevated CO2 concentration had no effect on the N content in the plants compared to the ambient CO2 concentration. The elevated CO2 concentration promoted N allocations of the different parts significantly and increased N allocation of the underground part. The results have confirmed the previous suggestions that the elevated CO2 concentration stimulates plant biomass production and decreases the N concentrations of the plant parts.展开更多
Field experiments were conducted to evaluate the effects of integrated use of agricultural wastes and a compound mineral fertilizer on the fluxes of soil nutrients. Agricultural wastes applied were: livestock manure (...Field experiments were conducted to evaluate the effects of integrated use of agricultural wastes and a compound mineral fertilizer on the fluxes of soil nutrients. Agricultural wastes applied were: livestock manure (cow dung and poultry litter), shoots of Chromolaena odorata and Parkia biglosa (locust bean), Neem (Azadiracta inidca) seed powder/cake and melon shell. These materials were applied at zero (control), 100% (i.e. organic wastes applied at the recommended rates of 10 t/ha) and 70% of their recommended rates plus 30% of the recommended rate of the mineral fertilizer (NPK: 400 Kg/ha). Average values of soil organic carbon (SOC) were 1.94, 1.68, 1.36 and 1.38 for organic wastes alone, organic waste plus mineral fertilizer (NPK) and unamended control. Mineral N ( N plus N) pools were relatively high at 30 and 60 days after planting, and were significantly higher for organically amended soils (550) and wastes applied at reduced rates combined with 120 kg/ha mineral NPK (470) than the unamended control (277). Across sampling dates, SOC values were the highest in poultry manure and neem seed cake. The values of N plus exchangeable N which constitutes plant available nitrogen (PAN) were significantly higher for organically amended soils and wastes applied at reduced rates combined with 120 kg/ha mineral NPK than the unamended control. The % C microbial to C organic ratio was higher in organically amended soils. The temporal profile of SOC, NH4-N and NO3-N showed declines with time, the relationship was linear for SOC (Y = 0.18x + 1.07;R2 = 0.34), by a power function for N (Y = 48.084x-1.79;R2 = 0.91) and a polynomial function for NH4-N (Y = -28.75x + 130.65x - 57.25;R2 = 0.61). The time dynamics of microbial population (cfu) followed trends obtained for SOC.展开更多
The aboveground primary production is a major source of carbon(C) and nitrogen(N) pool and plays an important role in regulating the response of ecosystem and nutrient cycling to natural and anthropogenic disturbances...The aboveground primary production is a major source of carbon(C) and nitrogen(N) pool and plays an important role in regulating the response of ecosystem and nutrient cycling to natural and anthropogenic disturbances. To explore the mechanisms underlying the effect of spring fire and topography on the aboveground biomass(AGB) and the soil C and N pool, we conducted a field experiment between April 2014 and August 2016 in a semi-arid grassland of northern China to examine the effects of slope and spring fire, and their potential interactions on the AGB and organic C and total N contents in different plant functional groups(C_3 grasses, C_4 grasses, forbs, Artemisia frigida plants, total grasses and total plants).The dynamics of AGB and the contents of organic C and N in the plants were examined in the burned and unburned plots on different slope positions(upper and lower). There were differences in the total AGB of all plants between the two slope positions. The AGB of grasses was higher on the lower slope than on the upper slope in July. On the lower slope, spring fire marginally or significantly increased the AGB of C_3 grasses, forbs, total grasses and total plants in June and August, but decreased the AGB of C_4 grasses and A.frigida plants from June to August. On the upper slope, however, spring fire significantly increased the AGB of forbs in June, the AGB of C_3 grasses and total grasses in July, and the AGB of forbs and C_4 grasses in August. Spring fire exhibited no significant effect on the total AGB of all plants on the lower and upper slopes in 2014 and 2015. In 2016, the total AGB in the burned plots showed a decreasing trend after fire burning compared with the unburned plots. The different plant functional groups had different responses to slope positions in terms of organic C and N contents in the plants. The lower and upper slopes differed with respect to the organic C and N contents of C_3 grasses, C_4 grasses, total grasses, forbs, A. frigida plants and total plants in different growing months. Slope position and spring fire significantly interacted to affect the AGB and organic C and N contents of C_4 grasses and A. frigida plants. We observed the AGB and organic C and N contents in the plants in a temporal synchronized pattern. Spring fire affected the functional AGB on different slope positions, likely by altering the organic C and N contents and, therefore,it is an important process for C and N cycling in the semi-arid natural grasslands. The findings of this study would facilitate the simulation of ecosystem C and N cycling in the semi-arid grasslands in northern China.展开更多
Plant biomass, primary production and mineral cycling were studied in a mixed deciduous forest (Quercus robur L., Tilia cordata L. and Corylus avellana L.) in southern Sweden. Plant biomass amount above and below grou...Plant biomass, primary production and mineral cycling were studied in a mixed deciduous forest (Quercus robur L., Tilia cordata L. and Corylus avellana L.) in southern Sweden. Plant biomass amount above and below ground was 201 and 37 t·ha-1, respectively. Primary production above and below ground was an estimated 13.3 and 2.3 t·ha-1, respectively. Carbon was the dominant element in the forest ecosystem, comprising 133 t·ha-1. Other major elements were: N > Ca > K > Si > Mg > S > Mn > P > Fe and Na (range 1123 to 18 kg·ha-1), followed by some trace elements. Yearly litterfall restored 6.0 t·ha-1 organic matter or 2.3 t·ha-1 carbon. Approximately 45% decomposed and returned to the soil during the year. Monitoring of other elements revealed that the ecosystem received inputs through dry and wet deposition, in particular 34.4 kg·ha-1 S and 9.4 kg·ha-1 of N yearly as throughfall. Determination of yearly biomass increase showed that the oak forest ecosystem was still in an aggradation or accumulation phase.展开更多
基金the National Natural Science Foundation of China(Nos.49890330,39770425 and 30070429) the National Key Basic Research Support Foundation of China(No.G1999011707).
文摘The contents of the soil microbial biomass nitrogen (SMBN) in the soils sampled from the Loess Plateau of China were determined using chloroform fumigation aerobic incubation method (CFAIM), chloroform fumigation anaerobic incubation method (CFANIM) and chloroform fumigation-extraction method (CFEM).The N taken up by ryegrass on the soils was determined after a glasshouse pot experiment. The flushes of nitrogen (FN) of the soils obtained by the CFAIM and CFANIM were higher than that by the CFEM, and there were significantly positive correlations between the FN obtained by the 3 methods. The N extracted from the fumigated soils by the CFAIM, CFANIM and CFEM were significantly positively correlated with the N uptake by ryegrass. The FN obtained by the 3 methods was also closely positively correlated with the plant N uptake. The contributions of the SMBN and mineral N and mineralized N during the incubation period to plant N uptake were evaluated with the multiple regression method. The results showed that the N contained in the soil microbial biomass might play a noticeable role in the N supply of the soils to the plant.
文摘The effect of ammonium fixation on the estimation of soil microbial biomass N was studied bv thestandard fumigation-incubation (FI) and fumigation-extraction (FE) methods. NO_3-N content of fumigatedsoil changed little during incubation, while the fixed NH in soils capable of fixing NH increased withthe increase of K_2SO_4-extractable NH_4-N. One day fumigation increased both extractable NH and fixedNH. However, prolonged fumigation gave no further increase. One day fumigation caused significant loss ofNO_3-N, while prolonged fumigation caused no further loss. For soils tested, the net increases of fixed NHin fumigated soil equaled to 0-94% of NH_4-N flush measured by the FI method, and 1-74% of extractable Nmeasured by the FE method, depending on different soils. It is concluded that the ammonium fixation wasone of the processes taking place in soils during fumigation as well as incubation after fumigation and shouldnot be neglected in the estimation of microbial biomass nitrogen by either FI or FE method.
文摘Two soils with relatively high (Soil 1) and low (Soil 2) ammonium fixation capacities were used in thisstudy to extalne the effect of ammonium fixation on the determination of N mineralised from soil ndcrobialbiomass. organism suspellsioll was quantitatively introduced to Soil 1 at various rates. Both fumigation-incubation (FI) and fumigation-ext raction (FE ) met hods were used to t reat t he soil. The amount of ffeedNH4+-N increased with increasing rate of organism-N addition. A close correlation was found between theamoun of fixed aznmonium and the rate of organism-N addition. The net increso of fixed NH4+-N wereequivalent to 38% and 12% of the added organism-N for FI and FE treatments, respectively in this specificsoil. To provide isotopic evidence, 15N-labelled organism-N was added to Soils 1 and 2 at 121.4 mg N kg-1.In FI treatment, 22 and 3 mg N kg-1 of labelled N were found in the fraction of fixed NH4+-N in Soils 1 and2 respectively; while in FE treatment, 9 mg N kg-1 of labelled N was found in the fraction of fixed NH4+-Nin Soil 1 only. There was no labelled N in the fraction of fixed NH4+-N in Soil 2. In all of the unfumigated(check) soils, there was little or no labelled N in the fixed fractions, probably because the organism-N addedwas easily mineralized and nitrified. A mean of 0.64 for KN value, the fraction of N ndneralized in the killedmicrobial biomass, was obtained with inclusion of the net increase of fixed NH4+-N. The corresponding valuecalculated with exclusion of the net increase of fixed NH4+-N was 0.46. It was concluded that ammniumfixation was a problem in determination of KN, particularly for soils with a high ammonium fixation capacity.Results also showed that microbial biomass N measurement by FE method was less affected by ammoniumprocess than that by FI method.
文摘The result of soil. culture experiment shows that lanthanum has inhibitory effect on the microbial biomass C and N in red soil, and the inhibition is strengthened with increasing concentration of La. The result of rice pot culture experiment shows that low concentration of La has slight stimulative effect on the microbial biomass C and N in red soil, but its high concentration has inhibitory effect and the inhibition is strengthened with increasing concentration of La. Soil microbial biomass is an important indicator for evaluating rare earths-polluted soil. It is assumed that the critical La concentration is 100 mg.kg(-1) at which red soil tends to be polluted.
文摘A laboratory incubation experiment was conducted to study the effect of chlorsulfuron herbicide on the size of the microbial in loamy sand soil. The herbicide was applied, at four levels that were control, field rate 0\^01 (FR), 0\^1 (10FR) and 1 (100FR) μg/g. Determinations of microbial biomass C content and microbial biomass N content were carried out 1, 3, 5, 7, 10, 15, 25 and 45 days after herbicide application. In comparison to untreated soil, the microbial biomass carbon and biomass nitrogen decreased significantly in soil treated with herbicide in levels 10FR and 100FR within the first 10 days incubation. A more considerable increase in the microbial biomass C∶N ratio was observed in the herbicide treated soil than the non treated control. This effect was transitory and only at the higher rates of chlorsulfuron was significant.
基金kindly supported by the National Key Research and Development Program of China through Grant 2016YFA0601000the National Natural Science Foundation of China through Grant 41425014
文摘High anthropogenic N loads and abundant bacteria are characteristic of highly contaminated urban rivers.To better understand the dispersal and accumulation of bacteria, we determined contents and isotopic compositions of suspended particulate organic matter(SPOM) and bacteria in a highly contaminated urban river(the Nanming)and effluents in winter and summer of 2013. Relative to SPOM, bacterial biomass in the river was depleted in ^(13)C and ^(15)N and its C/N ratio was lower(δ^(13)C:-33.2% ± 3.1%; δ^(15)N:-1.5% ± 1.2%; C/N:4.8 ± 0.6), while effluents showed higher ^(13)C and ^(15)N contents and C/N ratios(δ^(13)C:-25% ± 2.1%; δ ^(15)N:-8.5% ± 1.1%; C/N: 8.1 ± 1.2). Source recognition of SPOM was based on carbon isotopes because they are conservative and distinct between end-members(effluent detritus and bacterial biomass). Using a mixing model,bacterial biomass in the river was calculated to account for <20% and <56% of bulk suspended particulate organic nitrogen in winter and summer, respectively. An N budget showed that bacterial N was a small proportion of total nitrogen(<7.4%) in the riverwater.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP200807181008)the Science Fund of Shaanxi Normal University for the Young Scholars,China
文摘In forage grasses, the nitrogen concentration is directly related to the nutritional value. The studies examined the hypothesis that global elevation of CO2 concentration probably affects the biomass, nitrogen (N) concentration, and allocation and distribution patterns in the organs of forage grasses. While sainfoin (Onobrychis viciaefolia Scop.) seedlings grew on a low nutrient soil in closed chambers for 90 days, they were exposed to two CO2 concentrations (ambient or ambient+350 μmol mol^-1 CO2) without adding nutrients to them. After 90 days exposure to CO2, the biomasses of leaves, stems, and roots, and N concentrations and contents of different parts were measured. Compared with the ambient CO2 concentration, the elevated CO2 concentration increased the total dry matter by 25.07%, mainly due to the root and leaf having positive response to the elevated CO2 concentration. However, the elevated CO2 concentration did not change the proportions of the dry matters in different parts and the total plants compared with the ambient CO2 concentration. The elevated CO2 concentration lowered the N concentrations of the plant parts. Because the dry matter was higher, the elevated CO2 concentration had no effect on the N content in the plants compared to the ambient CO2 concentration. The elevated CO2 concentration promoted N allocations of the different parts significantly and increased N allocation of the underground part. The results have confirmed the previous suggestions that the elevated CO2 concentration stimulates plant biomass production and decreases the N concentrations of the plant parts.
文摘Field experiments were conducted to evaluate the effects of integrated use of agricultural wastes and a compound mineral fertilizer on the fluxes of soil nutrients. Agricultural wastes applied were: livestock manure (cow dung and poultry litter), shoots of Chromolaena odorata and Parkia biglosa (locust bean), Neem (Azadiracta inidca) seed powder/cake and melon shell. These materials were applied at zero (control), 100% (i.e. organic wastes applied at the recommended rates of 10 t/ha) and 70% of their recommended rates plus 30% of the recommended rate of the mineral fertilizer (NPK: 400 Kg/ha). Average values of soil organic carbon (SOC) were 1.94, 1.68, 1.36 and 1.38 for organic wastes alone, organic waste plus mineral fertilizer (NPK) and unamended control. Mineral N ( N plus N) pools were relatively high at 30 and 60 days after planting, and were significantly higher for organically amended soils (550) and wastes applied at reduced rates combined with 120 kg/ha mineral NPK (470) than the unamended control (277). Across sampling dates, SOC values were the highest in poultry manure and neem seed cake. The values of N plus exchangeable N which constitutes plant available nitrogen (PAN) were significantly higher for organically amended soils and wastes applied at reduced rates combined with 120 kg/ha mineral NPK than the unamended control. The % C microbial to C organic ratio was higher in organically amended soils. The temporal profile of SOC, NH4-N and NO3-N showed declines with time, the relationship was linear for SOC (Y = 0.18x + 1.07;R2 = 0.34), by a power function for N (Y = 48.084x-1.79;R2 = 0.91) and a polynomial function for NH4-N (Y = -28.75x + 130.65x - 57.25;R2 = 0.61). The time dynamics of microbial population (cfu) followed trends obtained for SOC.
基金supported by the National Key Basic Research and Development Program of China (2016YFC0500703)the National Natural Science Foundation of China (31572452, 41573063, 31870438)
文摘The aboveground primary production is a major source of carbon(C) and nitrogen(N) pool and plays an important role in regulating the response of ecosystem and nutrient cycling to natural and anthropogenic disturbances. To explore the mechanisms underlying the effect of spring fire and topography on the aboveground biomass(AGB) and the soil C and N pool, we conducted a field experiment between April 2014 and August 2016 in a semi-arid grassland of northern China to examine the effects of slope and spring fire, and their potential interactions on the AGB and organic C and total N contents in different plant functional groups(C_3 grasses, C_4 grasses, forbs, Artemisia frigida plants, total grasses and total plants).The dynamics of AGB and the contents of organic C and N in the plants were examined in the burned and unburned plots on different slope positions(upper and lower). There were differences in the total AGB of all plants between the two slope positions. The AGB of grasses was higher on the lower slope than on the upper slope in July. On the lower slope, spring fire marginally or significantly increased the AGB of C_3 grasses, forbs, total grasses and total plants in June and August, but decreased the AGB of C_4 grasses and A.frigida plants from June to August. On the upper slope, however, spring fire significantly increased the AGB of forbs in June, the AGB of C_3 grasses and total grasses in July, and the AGB of forbs and C_4 grasses in August. Spring fire exhibited no significant effect on the total AGB of all plants on the lower and upper slopes in 2014 and 2015. In 2016, the total AGB in the burned plots showed a decreasing trend after fire burning compared with the unburned plots. The different plant functional groups had different responses to slope positions in terms of organic C and N contents in the plants. The lower and upper slopes differed with respect to the organic C and N contents of C_3 grasses, C_4 grasses, total grasses, forbs, A. frigida plants and total plants in different growing months. Slope position and spring fire significantly interacted to affect the AGB and organic C and N contents of C_4 grasses and A. frigida plants. We observed the AGB and organic C and N contents in the plants in a temporal synchronized pattern. Spring fire affected the functional AGB on different slope positions, likely by altering the organic C and N contents and, therefore,it is an important process for C and N cycling in the semi-arid natural grasslands. The findings of this study would facilitate the simulation of ecosystem C and N cycling in the semi-arid grasslands in northern China.
文摘Plant biomass, primary production and mineral cycling were studied in a mixed deciduous forest (Quercus robur L., Tilia cordata L. and Corylus avellana L.) in southern Sweden. Plant biomass amount above and below ground was 201 and 37 t·ha-1, respectively. Primary production above and below ground was an estimated 13.3 and 2.3 t·ha-1, respectively. Carbon was the dominant element in the forest ecosystem, comprising 133 t·ha-1. Other major elements were: N > Ca > K > Si > Mg > S > Mn > P > Fe and Na (range 1123 to 18 kg·ha-1), followed by some trace elements. Yearly litterfall restored 6.0 t·ha-1 organic matter or 2.3 t·ha-1 carbon. Approximately 45% decomposed and returned to the soil during the year. Monitoring of other elements revealed that the ecosystem received inputs through dry and wet deposition, in particular 34.4 kg·ha-1 S and 9.4 kg·ha-1 of N yearly as throughfall. Determination of yearly biomass increase showed that the oak forest ecosystem was still in an aggradation or accumulation phase.