Catalytic coal gasification technology shows prominent advantages in enhancing coal gasification reactivity and is restrained by the cost of catalyst.Two typical biomass ash additions,corn stalk ash(CSA,high K–Na and...Catalytic coal gasification technology shows prominent advantages in enhancing coal gasification reactivity and is restrained by the cost of catalyst.Two typical biomass ash additions,corn stalk ash(CSA,high K–Na and low Si)and poplar sawdust ash(PSA,high K–Ca and high Si),were employed to study the influence of biomass ash on pyrolysis process and char gasification reactivity of the typical anthracite.Microstructure characteristics of the char samples were examined by X-ray diffraction(XRD).Based on isothermal char-CO2 gasification experiments,the influence of biomass ash on reactivity of anthracite char was determined using thermogravimetric analyzer.Furthermore,structural parameters were correlated with different reactivity parameters to illustrate the crucial factor on the gasification reactivity varied with char reaction stages.The results indicate that both CSA and PSA additives hinder the growth of adjacent basic structural units in a vertical direction of the carbon structure,and then slow down the graphitization process of the anthracite during pyrolysis.The inhibition effect is more prominent with the increasing of biomass ash.In addition,the gasification reactivity of anthracite char is significantly promoted,which could be mainly attributed to the abundant active AAEM(especially K and Na)contents of biomass ash and a lower graphitization degree of mixed chars.Higher K and Na contents illustrate that the CSA has more remarkable promotion effect on char gasification reactivity than PSA,in accordance with the inhibition effect on the order degree of anthracite char.The stacking layer number could reasonably act as a rough indicator for evaluating the gasification reactivity of the char samples.展开更多
Previously,the once-through CO_(2)chemical absorption process by biogas slurry was experimentally verified to offer the unique advantages like low energy consumption,cost-effectiveness,and feasibility of CO_(2)fixatio...Previously,the once-through CO_(2)chemical absorption process by biogas slurry was experimentally verified to offer the unique advantages like low energy consumption,cost-effectiveness,and feasibility of CO_(2)fixation in plants.However,this technology also faces some challenges and limitations,including a low CO_(2)absorption rate and performance.To improve the effectiveness and reliability of this innovative carbon capture,utilization,and storage(CCUS)technology,this study proposes a novel method to enhance the CO_(2)absorption performance without affecting agricultural applications of CO_(2)by mixing biogas slurry with biomass ash as the green CO_(2)absorbent.The results indicate that when the solid-liquid mass ratio of biomass ash to biogas slurry is 5:10,the CO_(2)loading of the biomass ash and biogas slurry mixture(BA-BS)reaches 936.7±59.1 mmol/kg.Furthermore,the pH of the BA-BS remains stable at 6.9,meeting the rhizosphere pH requirements for plant cultivation.The CO_(2)absorption of the BA-BS liquid phase,referred to as improved biogas slurry(IBS),reaches its maximum at 230.4±3.5 mmol/L,which is 126.8%higher than that of the unimproved biogas slurry.The nitrogen content in the BA-BS solid phase,calling improved biomass ash(IBA),also reaches its maximum at 4.24±0.74 mg/g,thereby expanding the agricultural utilization of biomass ash.The most reasonable and effective way of utilizing CO_(2)-rich mixed biogas slurry and biomass ash involves use IBA as the base fertilizer for tomato cultivation,supplemented later with IBS to promote growth.This optimal application allows for substantial utilization of CO_(2),introduced into the tomato cultivation environment by IBA and IBS.The carbon fixation of a single tomato has improved by 108.2%.This study thus provides a feasible solution for high-value negative carbonization of biogas slurry and biomass ash.展开更多
The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied d...The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.展开更多
Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according ...Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according to the method described in the Chinese national standard GB/T 5009.17-1996. The experimental stud)' was made using rice husk ash samples of different types and at different temperatures. The results show that the carbon content of the rice husk ash was 3.81% after treatment for 1 h at 600℃, the mercury removal rate was above 95%, but the adsorption efficiency was below 20% after incineration for 4 h. The adsorption efficiency of rice husk ash treated by H202 or HCI was very low, while the adsorption efficiency was very high when rice husk ash was pyrolytically carbonized or basified by NaOH; the adsorption efficiency ofbasified rice husk ash sample was up to 98.5%. The carbon content of rice husk ash could affect the adsorption of mercury to some degree, but the internal structure of the rice husk ash samples was a more important factor for adsorption.展开更多
基金This work was financial supported by Natural Science Foundation of Shanxi Province(Grant Number 201801D12105)Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(Grant Number 2017006)Shanxi Scholarship Council of China(Grant Number 2017-086).
文摘Catalytic coal gasification technology shows prominent advantages in enhancing coal gasification reactivity and is restrained by the cost of catalyst.Two typical biomass ash additions,corn stalk ash(CSA,high K–Na and low Si)and poplar sawdust ash(PSA,high K–Ca and high Si),were employed to study the influence of biomass ash on pyrolysis process and char gasification reactivity of the typical anthracite.Microstructure characteristics of the char samples were examined by X-ray diffraction(XRD).Based on isothermal char-CO2 gasification experiments,the influence of biomass ash on reactivity of anthracite char was determined using thermogravimetric analyzer.Furthermore,structural parameters were correlated with different reactivity parameters to illustrate the crucial factor on the gasification reactivity varied with char reaction stages.The results indicate that both CSA and PSA additives hinder the growth of adjacent basic structural units in a vertical direction of the carbon structure,and then slow down the graphitization process of the anthracite during pyrolysis.The inhibition effect is more prominent with the increasing of biomass ash.In addition,the gasification reactivity of anthracite char is significantly promoted,which could be mainly attributed to the abundant active AAEM(especially K and Na)contents of biomass ash and a lower graphitization degree of mixed chars.Higher K and Na contents illustrate that the CSA has more remarkable promotion effect on char gasification reactivity than PSA,in accordance with the inhibition effect on the order degree of anthracite char.The stacking layer number could reasonably act as a rough indicator for evaluating the gasification reactivity of the char samples.
基金funded by the National Natural Science Foundation of China(Nos.52076101,32360335)the Knowledge Innovation Program of Wuhan-Basic Research(No.2023020201010108)+3 种基金the Fundamental Research Funds for the Central Universities(No.2662023GXPY001)the High-level Talents Scientific Research Start-up Fund Project of Yulin University(No.2023GK47)the“New Star of Science and Technology”Talent Program of Yulin(No.CXY-2022-137)the Young Talent Fund of Association for Science and Technology in Yulin(No.20230514)。
文摘Previously,the once-through CO_(2)chemical absorption process by biogas slurry was experimentally verified to offer the unique advantages like low energy consumption,cost-effectiveness,and feasibility of CO_(2)fixation in plants.However,this technology also faces some challenges and limitations,including a low CO_(2)absorption rate and performance.To improve the effectiveness and reliability of this innovative carbon capture,utilization,and storage(CCUS)technology,this study proposes a novel method to enhance the CO_(2)absorption performance without affecting agricultural applications of CO_(2)by mixing biogas slurry with biomass ash as the green CO_(2)absorbent.The results indicate that when the solid-liquid mass ratio of biomass ash to biogas slurry is 5:10,the CO_(2)loading of the biomass ash and biogas slurry mixture(BA-BS)reaches 936.7±59.1 mmol/kg.Furthermore,the pH of the BA-BS remains stable at 6.9,meeting the rhizosphere pH requirements for plant cultivation.The CO_(2)absorption of the BA-BS liquid phase,referred to as improved biogas slurry(IBS),reaches its maximum at 230.4±3.5 mmol/L,which is 126.8%higher than that of the unimproved biogas slurry.The nitrogen content in the BA-BS solid phase,calling improved biomass ash(IBA),also reaches its maximum at 4.24±0.74 mg/g,thereby expanding the agricultural utilization of biomass ash.The most reasonable and effective way of utilizing CO_(2)-rich mixed biogas slurry and biomass ash involves use IBA as the base fertilizer for tomato cultivation,supplemented later with IBS to promote growth.This optimal application allows for substantial utilization of CO_(2),introduced into the tomato cultivation environment by IBA and IBS.The carbon fixation of a single tomato has improved by 108.2%.This study thus provides a feasible solution for high-value negative carbonization of biogas slurry and biomass ash.
基金supported by the National Key Basic Research Program of China(No.2014CB441003)the National Key Research and Development of China(No.2016YFD0200302)
文摘The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments.
文摘Biomass has a tendency to adsorb mercury from the flue gas emissions from fossil fuel combustion. In this paper, we have established an experimental table of the adsorption of mercury vapor by rice husk ash according to the method described in the Chinese national standard GB/T 5009.17-1996. The experimental stud)' was made using rice husk ash samples of different types and at different temperatures. The results show that the carbon content of the rice husk ash was 3.81% after treatment for 1 h at 600℃, the mercury removal rate was above 95%, but the adsorption efficiency was below 20% after incineration for 4 h. The adsorption efficiency of rice husk ash treated by H202 or HCI was very low, while the adsorption efficiency was very high when rice husk ash was pyrolytically carbonized or basified by NaOH; the adsorption efficiency ofbasified rice husk ash sample was up to 98.5%. The carbon content of rice husk ash could affect the adsorption of mercury to some degree, but the internal structure of the rice husk ash samples was a more important factor for adsorption.