Corrosion behavior of TP316L was investigated with simulated atmosphere and ash deposition for the superheater in biomass boiler.Corrosion dynamic curves were plotted by mass gain.The results showed that the corrosion...Corrosion behavior of TP316L was investigated with simulated atmosphere and ash deposition for the superheater in biomass boiler.Corrosion dynamic curves were plotted by mass gain.The results showed that the corrosion was dependent on temperature and was greatly accelerated by ash deposition.The mass gain was distinctly reduced in the presence of SO2 with and without ash deposition on the specimens.Corrosion rates with ash deposit at different temperatures were calculated.Two feasible methods were provided to avoid serious high-temperature corrosion in the biomass boiler.展开更多
The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control Sy...The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.展开更多
Polycyclic aromatic hydrocarbons(PAHs) are carcinogenic or mutagenic and are important toxic pollutants in the flue gas of boilers. Two industrial grade biomass boilers were selected to investigate the characteristi...Polycyclic aromatic hydrocarbons(PAHs) are carcinogenic or mutagenic and are important toxic pollutants in the flue gas of boilers. Two industrial grade biomass boilers were selected to investigate the characteristics of particulate-bound PAHs: one biomass boiler retro-fitted from an oil boiler(BB1) and one specially designed(BB2) biomass boiler. One coal-fired boiler was also selected for comparison. By using a dilution tunnel system, particulate samples from boilers were collected and 10 PAH species were analyzed by gas chromatography–mass spectrometry(GC–MS). The total emission factors(EFs) of PAHs ranged from 0.0064 to0.0380 mg/kg, with an average of 0.0225 mg/kg, for the biomass boiler emission samples. The total PAH EFs for the tested coal-fired boiler were 1.8 times lower than the average value of the biomass boilers. The PAH diagnostic ratios for wood pellets and straw pellets were similar.The ratio of indeno(1,2,3-cd)pyrene/[indeno(1,2,3-cd)pyrene + benzo(g,h,i)perylene] for the two biomass boilers was lower than those of the reference data for other burning devices, which can probably be used as an indicator to distinguish the emission of biomass boilers from that of industrial coal-fired boilers and residential stoves. The toxic potential of the emission from wood pellet burning was higher than that from straw pellet burning, however both of them were much lower than residential stove exhausts.展开更多
Biomass is considered a renewable and cleaner energy source alternative to fossil fuels.In recent years,industrial biomass boilers have been rapidly developed and widely used in the industrial field.This work makes a ...Biomass is considered a renewable and cleaner energy source alternative to fossil fuels.In recent years,industrial biomass boilers have been rapidly developed and widely used in the industrial field.This work makes a review on the fuel types used in industrial biomass boilers,the fuel characteristics and the characteristics of air pollutants emitted from the combustion of industrial biomass boilers and other contents in different studies.However,the existing research still has many deficiencies.In the future,further research on biomass fuel,industrial biomass boiler combustion process and the pollutants emitted by industrial biomass boiler combustion,especially the carbonaceous aerosol emitted by in-dustrial biomass boiler and carbonaceous aerosol optical properties still need to be made.At the same time,the potential harm of carbonaceous aerosols emitted from industrial biomass boiler sources to human health and climate change needs to be studied in depth.This review provides a scientific basis for the accurate evaluation of industrial biomass boilers and the effective prevention and control of various pollutants of industrial biomass boilers.展开更多
The stationary lumped-cell model was developed and used to simulate the thermal characteristics of domestic biomass boiler with helically coiled tube heat exchanger(HCHE).The device serves as the heat source for ORC(O...The stationary lumped-cell model was developed and used to simulate the thermal characteristics of domestic biomass boiler with helically coiled tube heat exchanger(HCHE).The device serves as the heat source for ORC(Organic Rankine Cycle)unit and utilizes the thermal oil as the medium transferring the heat to the unit.Most of studies available in the literature refer to the CFD simulations for water flow in tube coils or in one-or two-turn coil elements.These investigations are basically focused on the determination of Nusselt number.The proposed herein model aims at determining the thermal performance of flue gas-oil HCHE while providing low CPU time.To demonstrate the model possibilities,it was used to predict the flue gas temperatures at the inlet and outlet from the heat exchange zone,based on measurement data regarding the outlet temperature of thermal oil.Six test series were considered.The computation results appeared to be in satisfactory agreement with experimental results(the discrepancies do not exceed 12%).The investigations showed that the used approach may be recommended as an alternative method that allows for fast prediction of thermal parameters for units of complex geometries,in particular the multi-coil heat exchangers.展开更多
To evaluate the potential benefits of biomass use for air pollution control, this paper identified and quantified the emissions of major reactive organic compounds anticipated from biomass-fired industrial boilers. Wo...To evaluate the potential benefits of biomass use for air pollution control, this paper identified and quantified the emissions of major reactive organic compounds anticipated from biomass-fired industrial boilers. Wood pellets(WP) and straw pellets(SP) were burned to determine the volatile organic compound emission profiles for each biomass-boiler combination. More than 100 types of volatile organic compounds(VOCs) were measured from the two biomass boilers. The measured VOC species included alkanes, alkenes and acetylenes, aromatics, halocarbons and carbonyls. A single coal-fired boiler(CB) was also studied to provide a basis for comparison. Biomass boiler 1(BB1) emitted relatively high proportions of alkanes(28.9%–38.1% by mass) and alkenes and acetylenes(23.4%–40.8%),while biomass boiler 2(BB2) emitted relatively high proportions of aromatics(27.9%–29.2%)and oxygenated VOCs(33.0%–44.8%). The total VOC(TVOC) emission factors from BB1(128.59–146.16 mg/kg) were higher than those from BB2(41.26–85.29 mg/kg). The total ozone formation potential(OFP) ranged from 6.26 to 81.75 mg/m^3 with an average of 33.66 mg/m^3 for the two biomass boilers. The total secondary organic aerosol potential(SOAP) ranged from 61.56 to 211.67 mg/m^3 with an average of 142.27 mg/m^3 for the two biomass boilers.The emission factors(EFs) of TVOCs from biomass boilers in this study were similar to those for industrial coal-fired boilers with the same thermal power. These data can supplement existing VOC emission factors for biomass combustion and thus enrich the VOC emission inventory.展开更多
To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fire...To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fired </span><span style="font-family:Verdana;">boiler power generation system is studied. It is a challenge to achieve optimum performance for the coupled system. The models of biomass gasification coupled with co-firing of coal in a boiler have been established. A comparative study of three kinds of biomass (Food Rubbish, Straw and Wood Pellets) has </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been </span></span></span><span><span><span><span style="font-family:Verdana;">done. The syngas produced in a 10 t/h gasifier is fed to a 330 MWe coal-fired boiler for co-combustion, and the co-firing performances have been compared with pure coal combustion case under the conditions of constant boiler load. Results show that co-firing decreases the furnace combustion temperature and raises the flue gas temperature for Food Rubbish and Straw, while, flue gases temperature decrease in case of Wood Pellets. At the same time NO<sub>x</sub> and SO<sub>x</sub> emissions have reduced. The system efficiencies at constant load for Food Rubbish, Straw and Wood Pellets are 83.25%, </span><span style="font-family:Verdana;">83.88% and 82.56% when the optimum conditions of gasification and co-firing </span><span style="font-family:Verdana;">process are guaranteed.展开更多
Coal-fired plants are under pressure to reduce their carbon-intensity. Available options include co-firing CO2-neutral biomass, oxy-fuel-combustion as part of a carbon capture process or a combination of both to give...Coal-fired plants are under pressure to reduce their carbon-intensity. Available options include co-firing CO2-neutral biomass, oxy-fuel-combustion as part of a carbon capture process or a combination of both to give a “CO2-negative” power plant. BioCCS, the combination of CO2 Capture and Storage (CCS) with sustainable biomass conversion, is the only large-scale technology that can achieve net negative emissions. Combining, developing and demonstrating the oxy-combustion of high ratios of sustainable biomass with coal in flexible circulating fluidized bed (CFB) boiler will bring significant advances in the reduction of greenhouse gases (GHG) emissions. Areas addressed include possibilities for: biomass characterization;handling and feeding;co-firing ratios definition;CFB oxy-co-combustion studies;combustion performance;boiler flexibility in fuel and load;main emissions analysis;slaging, fouling and agglomeration;corrosion and erosion;and implications on plant operation and associated costs. The article will detail a comprehensive understanding on sustainable biomass supply, co-firing ratios and how direct biomass co-combustion under oxy-fuel conditions can be implemented. It seeks to push biomass co-combustion in future large-scale oxy-fuel CFB power stations to high thermal shares while enhancing the power plants’ operational flexibility, economic competitiveness and give operational procedures. There will be a need to consider the public acceptance of power production from coal and coal sustainability, by its combination with renewable sources of energy (biomass).展开更多
The numerical simulation model is proposed according to the characteristics of the biomass briquette fuels, which involves two main areas of interest: the solid combustion model in the bed and the out-of-bed gas combu...The numerical simulation model is proposed according to the characteristics of the biomass briquette fuels, which involves two main areas of interest: the solid combustion model in the bed and the out-of-bed gas combustion model. The contents and characteristics of 3 kinds of biomass and coals were experimentally tested. The biomass fuels compared with the coal fuel have the following characteristics: 1) Higher volatile content, lower fixed carbon content and calorific value;2) Lower carbon content, higher oxygen content;3) Lower ignition temperature, faster burning velocity. The discredited equations were established by the finite element analysis method, which analyzed the fuel endothermic process on the grate, while the out-of-bed gas combustion process was simulated by CFD. These two processes are strongly coupled. The results of the numerical simulation contain the steady state temperature distribution, oxygen distribution, carbon dioxide distribution and so on, which are used to judge burning effect and provide the correct furnace transformation method.展开更多
Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation ...Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation software was used to optimize the parameters of the system,according to the parameters obtained from the optimization,a test platform was built and winter heating test was carried out.The simulation results showed that the thickness of the air layer of 75 mm,the total area of the vent holes of 0.24 m^(2),and the thickness of the insulation layer of 120 mm were the optimal construction for the passive part;solar collector area of 28 m^(2),hot water storage tank volume of 1.4 m^(3),mass flow rate of 800 kg/h on the collector side,mass flow rate of 400 kg/h on the heat exchanger side,and output power of auxiliary heat source of 5∼9 kWwere the optimal constructions for active heating system.Test results showed that during the heating period,the system could provide sufficient heat to the room under different heating modes,and the indoor temperature reached over 18°C,which met the heating demand.The economic and environmental benefits of the system were analyzed,and the economic benefits of the systemwere better than coal-fired heating,and the CO_(2) emissionswere reduced by 3,292.25 kg compared with coalfiredheating.The results of the study showed that the combinedactive-passiveheating systemcouldeffectively solve the heating problems existing in rural buildings in Southern Xinjiang,and it also laid the theoretical foundation for the popularization of the combined heating systems.展开更多
在碳达峰、碳中和背景下,发展燃煤与生物质耦合发电是加快电力转型升级、实现煤电低碳发展的重要途径之一。在某台300 MW循环流化床(CFB)锅炉上设计建设了一套燃煤直燃耦合生物质的燃烧发电系统,并利用该系统进行了燃煤直燃耦合生物质...在碳达峰、碳中和背景下,发展燃煤与生物质耦合发电是加快电力转型升级、实现煤电低碳发展的重要途径之一。在某台300 MW循环流化床(CFB)锅炉上设计建设了一套燃煤直燃耦合生物质的燃烧发电系统,并利用该系统进行了燃煤直燃耦合生物质的燃烧特性试验研究。结果表明:该生物质直燃耦合系统运行稳定可靠;CFB锅炉在掺烧木屑颗粒燃料时,随着掺烧比的增加,混合燃料的飞灰含碳量下降、CO排放量降低,混合燃料的燃尽性得以改善;掺烧后经过锅炉燃烧配风优化,锅炉NOx排放量比纯烧原煤排放量略有降低。试验典型工况污染物测试表明:掺入木屑颗粒燃料后,锅炉烟气二噁英排放量为0.0088 ng TEQ/m^(3)(标准工况,φ(O_(2))=11%,下同),飞灰中二噁英排放量为0.0206 ng TEQ/m^(3);飞灰中重金属及P、As、Se等有害微量元素排放值总量为32.121mg/L;底渣中重金属及P、As、Se等有害微量元素排放值总量为3.918 mg/L,烟气和飞灰中的二噁英和重金属等有害物质排放均满足国家环保标准排放限值。展开更多
文摘Corrosion behavior of TP316L was investigated with simulated atmosphere and ash deposition for the superheater in biomass boiler.Corrosion dynamic curves were plotted by mass gain.The results showed that the corrosion was dependent on temperature and was greatly accelerated by ash deposition.The mass gain was distinctly reduced in the presence of SO2 with and without ash deposition on the specimens.Corrosion rates with ash deposit at different temperatures were calculated.Two feasible methods were provided to avoid serious high-temperature corrosion in the biomass boiler.
文摘The paper discusses the features of the Biomass Boiler drum water level. Conventional PID Control System can not reach a satisfaction result in nonlinearity and time different from Biomass Boiler Drum Water Control System. In this study, a kind of fuzzy self-adaptive PID controller is described and this controller is used in biomass boiler’s drum water level control system. Using the simulink tool of MATLAB simulation software to simulate the fuzzy adaptive PID and conventional PID control system, the result of the comparison shows that the fuzzy self-adaptive PID has the strong anti-jamming, flexibility and adaptability as well as the higher control precision in Biomass Boiler Drum Water.
基金supported by the National Natural Science Foundation of China (Nos.41105090,41275135)the International S&T Cooperation Program of China (No.2012DFG90290)+1 种基金the National High Technology Research and Development Program (863) of China (No.2012AA063506)China Ministry of Environmental Protection's Special Funds for Scientific Research on Public Welfare (No.20130916)
文摘Polycyclic aromatic hydrocarbons(PAHs) are carcinogenic or mutagenic and are important toxic pollutants in the flue gas of boilers. Two industrial grade biomass boilers were selected to investigate the characteristics of particulate-bound PAHs: one biomass boiler retro-fitted from an oil boiler(BB1) and one specially designed(BB2) biomass boiler. One coal-fired boiler was also selected for comparison. By using a dilution tunnel system, particulate samples from boilers were collected and 10 PAH species were analyzed by gas chromatography–mass spectrometry(GC–MS). The total emission factors(EFs) of PAHs ranged from 0.0064 to0.0380 mg/kg, with an average of 0.0225 mg/kg, for the biomass boiler emission samples. The total PAH EFs for the tested coal-fired boiler were 1.8 times lower than the average value of the biomass boilers. The PAH diagnostic ratios for wood pellets and straw pellets were similar.The ratio of indeno(1,2,3-cd)pyrene/[indeno(1,2,3-cd)pyrene + benzo(g,h,i)perylene] for the two biomass boilers was lower than those of the reference data for other burning devices, which can probably be used as an indicator to distinguish the emission of biomass boilers from that of industrial coal-fired boilers and residential stoves. The toxic potential of the emission from wood pellet burning was higher than that from straw pellet burning, however both of them were much lower than residential stove exhausts.
基金supported by the National Natural Science Foundation of China(grant Nos.42265011,41765009,and 52064037)the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province,China(grant No.20212BCJL23054)。
文摘Biomass is considered a renewable and cleaner energy source alternative to fossil fuels.In recent years,industrial biomass boilers have been rapidly developed and widely used in the industrial field.This work makes a review on the fuel types used in industrial biomass boilers,the fuel characteristics and the characteristics of air pollutants emitted from the combustion of industrial biomass boilers and other contents in different studies.However,the existing research still has many deficiencies.In the future,further research on biomass fuel,industrial biomass boiler combustion process and the pollutants emitted by industrial biomass boiler combustion,especially the carbonaceous aerosol emitted by in-dustrial biomass boiler and carbonaceous aerosol optical properties still need to be made.At the same time,the potential harm of carbonaceous aerosols emitted from industrial biomass boiler sources to human health and climate change needs to be studied in depth.This review provides a scientific basis for the accurate evaluation of industrial biomass boilers and the effective prevention and control of various pollutants of industrial biomass boilers.
基金financially supported by a National Project POIG.01.01.02-00-016/08“Model of agroenergy complexes as an example of distributed cogeneration based on a local renewable energy sources”。
文摘The stationary lumped-cell model was developed and used to simulate the thermal characteristics of domestic biomass boiler with helically coiled tube heat exchanger(HCHE).The device serves as the heat source for ORC(Organic Rankine Cycle)unit and utilizes the thermal oil as the medium transferring the heat to the unit.Most of studies available in the literature refer to the CFD simulations for water flow in tube coils or in one-or two-turn coil elements.These investigations are basically focused on the determination of Nusselt number.The proposed herein model aims at determining the thermal performance of flue gas-oil HCHE while providing low CPU time.To demonstrate the model possibilities,it was used to predict the flue gas temperatures at the inlet and outlet from the heat exchange zone,based on measurement data regarding the outlet temperature of thermal oil.Six test series were considered.The computation results appeared to be in satisfactory agreement with experimental results(the discrepancies do not exceed 12%).The investigations showed that the used approach may be recommended as an alternative method that allows for fast prediction of thermal parameters for units of complex geometries,in particular the multi-coil heat exchangers.
基金supported by the National Natural Science Foundation of China(No.41275135)the Chinese National Key Research and Development Plan(No.2017YFC0212503)
文摘To evaluate the potential benefits of biomass use for air pollution control, this paper identified and quantified the emissions of major reactive organic compounds anticipated from biomass-fired industrial boilers. Wood pellets(WP) and straw pellets(SP) were burned to determine the volatile organic compound emission profiles for each biomass-boiler combination. More than 100 types of volatile organic compounds(VOCs) were measured from the two biomass boilers. The measured VOC species included alkanes, alkenes and acetylenes, aromatics, halocarbons and carbonyls. A single coal-fired boiler(CB) was also studied to provide a basis for comparison. Biomass boiler 1(BB1) emitted relatively high proportions of alkanes(28.9%–38.1% by mass) and alkenes and acetylenes(23.4%–40.8%),while biomass boiler 2(BB2) emitted relatively high proportions of aromatics(27.9%–29.2%)and oxygenated VOCs(33.0%–44.8%). The total VOC(TVOC) emission factors from BB1(128.59–146.16 mg/kg) were higher than those from BB2(41.26–85.29 mg/kg). The total ozone formation potential(OFP) ranged from 6.26 to 81.75 mg/m^3 with an average of 33.66 mg/m^3 for the two biomass boilers. The total secondary organic aerosol potential(SOAP) ranged from 61.56 to 211.67 mg/m^3 with an average of 142.27 mg/m^3 for the two biomass boilers.The emission factors(EFs) of TVOCs from biomass boilers in this study were similar to those for industrial coal-fired boilers with the same thermal power. These data can supplement existing VOC emission factors for biomass combustion and thus enrich the VOC emission inventory.
文摘To reduce greenhouse gases emission and increase the renewable energy uti</span><span style="font-family:Verdana;">lization portion in the world, the biomass gasification coupled with a coal-fired </span><span style="font-family:Verdana;">boiler power generation system is studied. It is a challenge to achieve optimum performance for the coupled system. The models of biomass gasification coupled with co-firing of coal in a boiler have been established. A comparative study of three kinds of biomass (Food Rubbish, Straw and Wood Pellets) has </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">been </span></span></span><span><span><span><span style="font-family:Verdana;">done. The syngas produced in a 10 t/h gasifier is fed to a 330 MWe coal-fired boiler for co-combustion, and the co-firing performances have been compared with pure coal combustion case under the conditions of constant boiler load. Results show that co-firing decreases the furnace combustion temperature and raises the flue gas temperature for Food Rubbish and Straw, while, flue gases temperature decrease in case of Wood Pellets. At the same time NO<sub>x</sub> and SO<sub>x</sub> emissions have reduced. The system efficiencies at constant load for Food Rubbish, Straw and Wood Pellets are 83.25%, </span><span style="font-family:Verdana;">83.88% and 82.56% when the optimum conditions of gasification and co-firing </span><span style="font-family:Verdana;">process are guaranteed.
文摘Coal-fired plants are under pressure to reduce their carbon-intensity. Available options include co-firing CO2-neutral biomass, oxy-fuel-combustion as part of a carbon capture process or a combination of both to give a “CO2-negative” power plant. BioCCS, the combination of CO2 Capture and Storage (CCS) with sustainable biomass conversion, is the only large-scale technology that can achieve net negative emissions. Combining, developing and demonstrating the oxy-combustion of high ratios of sustainable biomass with coal in flexible circulating fluidized bed (CFB) boiler will bring significant advances in the reduction of greenhouse gases (GHG) emissions. Areas addressed include possibilities for: biomass characterization;handling and feeding;co-firing ratios definition;CFB oxy-co-combustion studies;combustion performance;boiler flexibility in fuel and load;main emissions analysis;slaging, fouling and agglomeration;corrosion and erosion;and implications on plant operation and associated costs. The article will detail a comprehensive understanding on sustainable biomass supply, co-firing ratios and how direct biomass co-combustion under oxy-fuel conditions can be implemented. It seeks to push biomass co-combustion in future large-scale oxy-fuel CFB power stations to high thermal shares while enhancing the power plants’ operational flexibility, economic competitiveness and give operational procedures. There will be a need to consider the public acceptance of power production from coal and coal sustainability, by its combination with renewable sources of energy (biomass).
文摘The numerical simulation model is proposed according to the characteristics of the biomass briquette fuels, which involves two main areas of interest: the solid combustion model in the bed and the out-of-bed gas combustion model. The contents and characteristics of 3 kinds of biomass and coals were experimentally tested. The biomass fuels compared with the coal fuel have the following characteristics: 1) Higher volatile content, lower fixed carbon content and calorific value;2) Lower carbon content, higher oxygen content;3) Lower ignition temperature, faster burning velocity. The discredited equations were established by the finite element analysis method, which analyzed the fuel endothermic process on the grate, while the out-of-bed gas combustion process was simulated by CFD. These two processes are strongly coupled. The results of the numerical simulation contain the steady state temperature distribution, oxygen distribution, carbon dioxide distribution and so on, which are used to judge burning effect and provide the correct furnace transformation method.
基金This study was funded by the Xinjiang Production and Construction Corps Southern Xinjiang Key Industry Support Program Project,Grant Number 2019DB007.
文摘Aiming at the problems of large energy consumption and serious pollution of winter heating existing in the rural buildings in Southern Xinjiang,a combined active-passive heating system was proposed,and the simulation software was used to optimize the parameters of the system,according to the parameters obtained from the optimization,a test platform was built and winter heating test was carried out.The simulation results showed that the thickness of the air layer of 75 mm,the total area of the vent holes of 0.24 m^(2),and the thickness of the insulation layer of 120 mm were the optimal construction for the passive part;solar collector area of 28 m^(2),hot water storage tank volume of 1.4 m^(3),mass flow rate of 800 kg/h on the collector side,mass flow rate of 400 kg/h on the heat exchanger side,and output power of auxiliary heat source of 5∼9 kWwere the optimal constructions for active heating system.Test results showed that during the heating period,the system could provide sufficient heat to the room under different heating modes,and the indoor temperature reached over 18°C,which met the heating demand.The economic and environmental benefits of the system were analyzed,and the economic benefits of the systemwere better than coal-fired heating,and the CO_(2) emissionswere reduced by 3,292.25 kg compared with coalfiredheating.The results of the study showed that the combinedactive-passiveheating systemcouldeffectively solve the heating problems existing in rural buildings in Southern Xinjiang,and it also laid the theoretical foundation for the popularization of the combined heating systems.
文摘在碳达峰、碳中和背景下,发展燃煤与生物质耦合发电是加快电力转型升级、实现煤电低碳发展的重要途径之一。在某台300 MW循环流化床(CFB)锅炉上设计建设了一套燃煤直燃耦合生物质的燃烧发电系统,并利用该系统进行了燃煤直燃耦合生物质的燃烧特性试验研究。结果表明:该生物质直燃耦合系统运行稳定可靠;CFB锅炉在掺烧木屑颗粒燃料时,随着掺烧比的增加,混合燃料的飞灰含碳量下降、CO排放量降低,混合燃料的燃尽性得以改善;掺烧后经过锅炉燃烧配风优化,锅炉NOx排放量比纯烧原煤排放量略有降低。试验典型工况污染物测试表明:掺入木屑颗粒燃料后,锅炉烟气二噁英排放量为0.0088 ng TEQ/m^(3)(标准工况,φ(O_(2))=11%,下同),飞灰中二噁英排放量为0.0206 ng TEQ/m^(3);飞灰中重金属及P、As、Se等有害微量元素排放值总量为32.121mg/L;底渣中重金属及P、As、Se等有害微量元素排放值总量为3.918 mg/L,烟气和飞灰中的二噁英和重金属等有害物质排放均满足国家环保标准排放限值。