期刊文献+
共找到34篇文章
< 1 2 >
每页显示 20 50 100
5-Hydroxymethylfurfural: A key intermediate for efficient biomass conversion
1
作者 Yajie Zhang Jian Zhang Dangsheng Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期548-551,共4页
Biomass has been widely accepted as a "zero-emission" energy carrier to take place fossil fuels, while its catalytic conversion is still limited by low efficiency of carbon atoms. Biomass conversion via 5- hydroxyme... Biomass has been widely accepted as a "zero-emission" energy carrier to take place fossil fuels, while its catalytic conversion is still limited by low efficiency of carbon atoms. Biomass conversion via 5- hydroxymethylfurfural (HMF) as a platform chemical is highly attractive because almost all carbon atoms could he retained in the downstream chemicals under mild reaction conditions. Here we summarize recent fundamental researches and industrial progresses on all involved processes including biomass degradation to hexoses, HMF formation, hydrogenation and oxidation of HMF. 展开更多
关键词 biomass conversion 5-Hydroxymethylfur rural Catalysis Energy
下载PDF
Plasmonic quantum dots modulated nano-mineral toward photothermal reduction of CO_(2)coupled with biomass conversion
2
作者 Guangbiao Cao Haoran Xing +4 位作者 Haoguan Gui Chao Yao Yinjuan Chen Yongsheng Chen Xiazhang Li 《Nano Research》 SCIE EI CSCD 2024年第6期5061-5072,共12页
Simultaneous conversion of CO_(2)and biomass into value-added chemicals through solar-driven catalysis holds tremendous importance for fostering a sustainable circular economy.Herein,plasmonic Bi quantum dots were imm... Simultaneous conversion of CO_(2)and biomass into value-added chemicals through solar-driven catalysis holds tremendous importance for fostering a sustainable circular economy.Herein,plasmonic Bi quantum dots were immobilized on phosphoric acid modified attapulgite(P-ATP)nanorod using an in-situ reduction-deposition method,and were employed for photocatalytic reduction of CO_(2)coupled with oxidation of biomass-derived benzyl alcohol.Results revealed that Bi atoms successfully integrated into the basal structure of P-ATP,forming chemically coordinated Bi-O-Si bonds that served as efficient transportation channels for electrons.The incorporation of high-density monodispersed Bi quantum dots induced a surface plasmon resonance(SPR)effect,expanding the light absorption range into the near-infrared region.As a consequence,the photo-thermal transformation was significantly accelerated,leading to enhanced reaction kinetics.Notably,50%Bi/P-ATP nanocomposite exhibited the highest plasmon-mediated photocatalytic CH4 generation(115.7μmol·g^(−1)·h^(−1))and CO generation(44.9μmol·g^(−1)·h^(−1)),along with remarkable benzaldehyde generation rate of 79.5μmol·g^(−1)·h^(−1)in the photo-redox coupling system under solar light irradiation.The hydrogen protons released from the oxidation of benzyl alcohol facilitated the incorporation of more hydrogen protons into CO_(2)to form key CH_(3)O−intermediates.This work demonstrates the synergistic solar-driven valorization of CO_(2)and biomass using natural mineral based catalyst. 展开更多
关键词 photothermal catalysis clay mineral PLASMON CO_(2)reduction biomass conversion
原文传递
Electrochemical reduction of carbon dioxide to produce formic acid coupled with oxidative conversion of biomass
3
作者 Xi Liu Yifan Wang +2 位作者 Zhiwei Dai Daihong Gao Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期705-729,共25页
Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(... Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products. 展开更多
关键词 Electrochemical reduction of CO_(2) Formic acid Oxidative conversion of biomass LIGNOCELLULOSE Coupled system
下载PDF
Biomass valorization via electrocatalytic carbon–carbon bond cleavage
4
作者 Keping Wang Zhenyan Guo +5 位作者 Min Zhou Ying Yang Lanyun Li Hu Li Rafael Luque Shunmugavel Saravanamurugan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期542-578,共37页
Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon... Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon bond cleavage of high selectivity,various functionalized molecules,such as organic acids,amides,esters,and nitriles,have great potential to be accessed from biomass.However,it has merely received finite concerns and interests in the biorefinery.This review first showcases the research progress on the electrocatalytic conversion of lipid/sugar-and lignin-derived molecules(e.g.,glycerol,mesoerythritol,xylose,glucose,1-phenylethanol,and cyclohexanol)into organic acids via specific carbon–carbon bond scission processes,with focus on disclosing reaction mechanisms,recognizing actual active species,and collecting feasible modification strategies.For the guidance of further extensive studies on biomass valorization,organic transformations via a variety of reactions,including decarboxylation,ring-opening,rearrangement,reductive hydrogenation,and carboxylation,are also disclosed for the construction of similar carbon skeletons/scaffolds.The remaining challenges,prospective applications,and future objectives in terms of biomass conversion are also proposed.This review is expected to provide references to develop renewed electrocatalytic carbon–carbon bond cleavage transformation paths/strategies for biomass upgrading. 展开更多
关键词 ELECTROCATALYSIS biomass conversion Carbon-carbon bond cleavage Organic acids
下载PDF
One-pot synthesis of 2,5-bis(hydroxymethyl)furan from biomass derived 5-(chloromethyl)furfural in high yield 被引量:1
5
作者 Binglin Chen Yunchao Feng +9 位作者 Sen Ma Weizhen Xie Guihua Yan Zheng Li Jonathan Sperry Shuliang Yang Xing Tang Yong Sun Lu Lin Xianhai Zeng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期421-428,I0011,共9页
5-(Chloromethyl)furfural(CMF),as a new platform molecular,has become a hot topic in the field of biorefinery.Herein,the one-pot conversion of CMF to 2,5-bis(hydroxymethyl)furan(BHMF)in the water phase was demonstrated... 5-(Chloromethyl)furfural(CMF),as a new platform molecular,has become a hot topic in the field of biorefinery.Herein,the one-pot conversion of CMF to 2,5-bis(hydroxymethyl)furan(BHMF)in the water phase was demonstrated for the first time.A 91%BHMF yield was obtained over Ru/Cu Oxcatalyst,and BHMF was mainly produced by the consecutive hydrolysis and hydrogenation of CMF with 5-hydroxymethylfurfural(HMF)as an intermediate.Kinetic studies revealed that the conversion of HMF to BHMF was the rate-determining step.Remarkably,the characterizations and density functional theory(DFT)calculations further revealed the lower electron density of Ru NPs in Ru/Cu Oxcatalyst,resulting in a larger adsorption energy and a smaller free energy difference for the formation of alcohols.The present findings offered a new pathway for biomass-derived diol production through CMF as a potential source. 展开更多
关键词 2 5-Bis(hydroxymethyl)furan Hydrolysis Hydrogenation biomass conversion Heterogeneous catalysis
下载PDF
Synthesis of ternary magnetic nanoparticles for enhanced catalytic conversion of biomass-derived methyl levulinate into γ-valerolactone
6
作者 Xueli Chen Tingting Zhao +6 位作者 Xuesong Zhang Yuxuan Zhang Haitao Yu Qian Lyu Xiwen Jia Lujia Han Weihua Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期430-441,I0010,共13页
Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst prepar... Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst preparation and recycling process.Here we have successfully synthesized a ternary magnetic nanoparticle catalyst(Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)),over which biomass-derived methyl levulinate(ML)can be quantitively converted to GVL with an extremely high selectivity of>99%and yield of-98%in the absence of molecular hydrogen.Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)incorporates simultaneously inexpensive alumina and zirconia onto magnetite support by a facile coprecipitation method,giving rise to a core-shell structure,welldistributed acid-base sites,and strong magnetism,as evidenced by the X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-angle annular dark-field scanning-TEM(HAADF-STEM),SEM-energy dispersive Xray spectroscopy(SEM-EDX),temperature-programmed desorption of ammonia(NH3-TPD),temperature-programmed desorption of carbon dioxide(CO_(2)-TPD),pyridine-adsorption infrared spectra(Py-IR),and vibrating sample magnetometry(VSM).Such characteristics enable it to be highly active and easily recycled by a magnet for at least five cycles with a slight loss of its catalytic activity,avoiding a time-consuming and energy-intensive reactivation process.It is found that there was a synergistic effect among the metal oxides,and the high efficiency and selectivity originating from such synergism are evidenced by kinetic studies.Furthermore,a reaction mechanism regarding the hydrogenation of ML to GVL is proposed by these findings,coupled with gas chromatography-mass spectrometry(GC-MS)analysis.Accordingly,this readily synthesized and recovered magnetic nanocatalyst for conversion of biomassderived ML into GVL can provide an eco-friendly and safe way for biomass valorization. 展开更多
关键词 Magnetic nanoparticles Bifunctional catalyst biomass conversion Catalytic transfer hydrogenation γ-Valerolactone
下载PDF
Acidic Magnetic Biocarbon-Enabled Upgrading of Biomass-Based Hexanedione into Pyrroles
7
作者 Zhimei Li Kuan Tian +3 位作者 Keping Wang Zhengyi Li Haoli Qin Hu Li 《Journal of Renewable Materials》 EI 2023年第11期3847-3865,共19页
Sustainable acquisition of bioactive compounds from biomass-based platform molecules is a green alternative for existing CO_(2)-emitting fossil-fuel technologies.Herein,a core–shell magnetic biocarbon catalyst functi... Sustainable acquisition of bioactive compounds from biomass-based platform molecules is a green alternative for existing CO_(2)-emitting fossil-fuel technologies.Herein,a core–shell magnetic biocarbon catalyst functionalized with sulfonic acid(Fe3O4@SiO_(2)@chitosan-SO_(3)H,MBC-SO_(3)H)was prepared to be efficient for the synthesis of various N-substituted pyrroles(up to 99% yield)from bio-based hexanedione and amines under mild conditions.The abundance of Bronsted acid sites in the MBC-SO_(3)H ensured smooth condensation of 2,5-hexanedione with a variety of amines to produce N-substituted pyrroles.The reaction was illustrated to follow the conventional Pall-Knorr coupling pathway,which includes three cascade reaction steps:amination,loop closure and dehydration.The prepared MBC-SO_(3)H catalyst could effectively activate 2,5-hexanedione,thus weakening the dependence of the overall conversion process on the amine nucleophilicity.The influence of different factors(e.g.,reaction temperature,time,amount of catalyst,molar ratio of substrates,and solvent type)on the reaction activity and selectivity were investigated comprehensively.Moreover,the MBC-SO_(3)H possessed excellent thermochemical stability,reusability,and easy separation due to the presence of magnetic core-shell structures.Notably,there was no activity attenuation after 5 consecutive catalytic experiments.This work demonstrates a wide range of potential applications of developing functionalized core-shell magnetic materials to construct bioactive backbones from biomass-based platform molecules. 展开更多
关键词 Magnetic materials biomass conversion heterogeneous catalysis sustainable chemistry
下载PDF
Synergy of heterogeneous Co/Ni dual atoms enabling selective C-O bond scission of lignin coupling with in-situ N-functionalization
8
作者 Baoyu Wang Jinshu Huang +3 位作者 Hongguo Wu Ximing Yan Yuhe Liao Hu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期16-25,共10页
Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst... Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin. 展开更多
关键词 biomass conversion Heterogeneous catalysis LIGNIN Dual-atom catalyst Selective C-ocleavage
下载PDF
Developing individual tree-based models for estimating aboveground biomass of five key coniferous species in China 被引量:5
9
作者 Weisheng Zeng Liyong Fu +3 位作者 Ming Xu Xuejun Wang Zhenxiong Chen Shunbin Yao 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1251-1261,共11页
Estimating individual tree biomass is critical to forest carbon accounting and ecosystem service modeling.In this study,we developed one-(tree diameter only) and two-variable(tree diameter and height) biomass equa... Estimating individual tree biomass is critical to forest carbon accounting and ecosystem service modeling.In this study,we developed one-(tree diameter only) and two-variable(tree diameter and height) biomass equations,biomass conversion factor(BCF) models,and an integrated simultaneous equation system(ISES) to estimate the aboveground biomass for five conifer species in China,i.e.,Cunninghamia lanceolata(Lamb.) Hook.,Pinus massoniana Lamb.,P.yunnanensis Faranch,P.tabulaeformis Carr.and P.elliottii Engelm.,based on the field measurement data of aboveground biomass and stem volumes from 1055 destructive sample trees across the country.We found that all three methods,including the one-and two-variable equations,could adequately estimate aboveground biomass with a mean prediction error less than 5%,except for Pinus yunnanensis which yielded an error of about 6%.The BCF method was slightly poorer than the biomass equation and the ISES methods.The average coefficients of determination(R^2) were 0.944,0.938 and 0.943 and the mean prediction errors were 4.26,4.49 and 4.29% for the biomass equation method,the BCF method and the ISES method,respectively.The ISES method was the best approach for estimating aboveground biomass,which not only had high accuracy but also could estimate stocking volumes simultaneously that was compatible with aboveground biomass.In addition,we found that it is possible to develop a species-invariant one-variable allometric model for estimating aboveground biomass of all the five coniferous species.The model had an exponent parameter of 7/3 and the intercept parameter a_0 could be estimated indirectly from stem basic density(a_0= 0.294 q). 展开更多
关键词 biomass models Allometric equations biomass conversion factor Error-in-variable simultaneous equations
下载PDF
Development of monitoring and assessment of forest biomass and carbon storage in China
10
作者 Wei-Sheng Zeng 《Forest Ecosystems》 SCIE CAS CSCD 2015年第1期1-10,共10页
Addressing climate change has become a common issue around the world in the 21st century and equally an important mission in Chinese forestry.Understanding the development of monitoring and assessment of forest biomas... Addressing climate change has become a common issue around the world in the 21st century and equally an important mission in Chinese forestry.Understanding the development of monitoring and assessment of forest biomass and carbon storage in China is important for promoting the evaluation of forest carbon sequestration capacity of China.The author conducts a systematic analysis of domestic publications addressing"monitoring and assessment of forest biomass and carbon storage"in order to understand the development trends,describes the brief history through three stages,and gives the situation of new development.Towards the end of the 20th century,a large number of papers on biomass and productivity of the major forest types in China had been published,covering the exploration and efforts of more than 20 years,while investigations into assessment of forest carbon storage had barely begun.Based on the data of the 7th and 8th National Forest Inventories,forest biomass and carbon storage of the entire country were assessed using individual tree biomass models and carbon conversion factors of major tree species,both previously published and newly developed.Accompanying the implementation of the 8th National Forest Inventory,a program of individual tree biomass modeling for major tree species in China was carried out simultaneously.By means of thematic research on classification of modeling populations,as well as procedures for collecting samples and methodology for biomass modeling,two technical regulations on sample collection and model construction were published as ministerial standards for application.Requests for approval of individual tree biomass models and carbon accounting parameters of major tree species have been issued for approval as ministerial standards.With the improvement of biomass models and carbon accounting parameters,thematic assessment of forest biomass and carbon storage will be gradually changed into a general monitoring of forest biomass and carbon storage,in order to realize their dynamic monitoring in national forest inventories.Strengthening the analysis and assessment of spatial distribution patterns of forest biomass and carbon storage through application of remote sensing techniques and geostatistical approaches will also be one of the major directions of development in the near future. 展开更多
关键词 biomass models Carbon accounting parameters biomass conversion factor Root-to-shoot ratio Carbon storage
下载PDF
Facet effect on the reconstructed Cu-catalyzed electrochemical hydrogenation of 5-hydroxymethylfurfural(HMF) towards 2,5-bis(hydroxymethy)furan (BHMF) 被引量:1
11
作者 Mengxia Li Tianxi Zheng +7 位作者 Dongfei Lu Shiwei Dai Xin Chen Xinchen Pan Dibo Dong Rengui Weng Gang Xu Fanan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期101-111,共11页
The electrochemical hydrogenation of HMF to BHMF is an elegant alternative to the conventio nal thermocatalytic route for the production of high-value-added chemicals from biomass resources.In virtue of the wide poten... The electrochemical hydrogenation of HMF to BHMF is an elegant alternative to the conventio nal thermocatalytic route for the production of high-value-added chemicals from biomass resources.In virtue of the wide potential window with promising Faradic efficiency(FE) towards BHMF,Cu-based electrode has been in the center of investigation.However,its structure-activity relationship remains ambiguous and its intrinsic catalytic activity is still unsatisfactory.In this work,we develop a two-step oxidation-reduction strategy to reconstruct the surface atom arrangement of the Cu foam(CF).By combination of multiple quasi-situ/in-situ techniques and density functional theory(DFT) calculation,the critical factor that governs the reaction is demonstrated to be facet effect of the metallic Cu crystal:Cu(110) facet accounts for the most favorable surface with enhanced chemisorption with reactants and selective production of BHMF,while Cu(100) facet might trigger the accumulation of the by-product 5,5'-bis(hydroxy methy)hydrofurion(BHH).With the optimized composition of the facets on the reconstructed Cu(OH)_(2)-ER/CF,the performance could be noticeably enhanced with a BHMF FE of 92.3% and HMF conversion of 98.5% at a potential of -0.15 V versus reversible hydrogen electrode(vs.RHE) in 0.1 M KOH solution.This work sheds light on the incomplete mechanistic puzzle for Cu-catalyzed electrochemical hydrogenation of HMF to BHMF,and provides a theoretical foundation for further precise design of highly efficient catalytic electrodes. 展开更多
关键词 Electrochemical hydrogenation biomass conversion 5-HYDROXYMETHYLFURFURAL Cu electrode Facet effect
下载PDF
Cooperative catalysis of Co single atoms and nanoparticles enables selective CAr-OCH_(3) cleavage for sustainable production of lignin-based cyclohexanols
12
作者 Baoyu Wang Peng Zhou +3 位作者 Ximing Yan Hu Li Hongguo Wu Zehui Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期535-549,共15页
In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of ... In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of lignin-derived o-methoxyphenols(lignin oil)to cyclohexanols(up to 97%yield)via cascade demethoxylation and dearomatization.Theoretical calculations elaborated that the dual-size Co catalyst exhibited a cooperative effect in the selective demethoxylation process,in which the Co NPs could initially dissociate hydrogen at lower energies while Co1remarkably facilitated the cleavage of the C_(Ar)-OCH_(3)bond.Moreover,the intramolecular hydrogen bonds formed in the omethoxy-containing phenols were found to result in a decrease in the bond energy of the C_(Ar)-OCH_(3)bond,which was more prone to be activated by the dual-size Co sites.Notably,the pre-hydrogenated intermediate(e.g.,2-methoxycyclohexanol from guaiacol)is difficult to undergo demethoxylation,indicating that the selective C_(Ar)-OCH_(3)bond cleavage is a prerequisite for the synthesis of cyclohexanols.The 0.2Co_(1-NPs)@NC catalyst was highly recyclable with a neglect decline in activity during five consecutive cycles.This cooperative catalytic strategy based on the metal size effect opens new avenues for biomass upgrading via enhanced C-O bond cleavage of high selectivity. 展开更多
关键词 biomass conversion Heterogeneous catalysis C-O bond cleavage Lignin valorization CYCLOHEXANOLS
下载PDF
Valorization of Aloe barbadensis Miller. (Aloe vera) Processing Waste
13
作者 Jeltzlin Semerel Nigel John +1 位作者 Wim Dehaen Pedro Fardim 《Journal of Renewable Materials》 SCIE EI 2023年第3期1031-1061,共31页
Aloe vera plant is known worldwide for its medicinal properties and application in gel-based products such as shampoo,soap,and sunscreen.However,the demand for these gel-based products has led to a surplus production ... Aloe vera plant is known worldwide for its medicinal properties and application in gel-based products such as shampoo,soap,and sunscreen.However,the demand for these gel-based products has led to a surplus production of Aloe vera processing waste.An Aloe vera gel processing facility could generate up to 4000 kg of Aloe vera waste per month.Currently the Aloe vera waste is being disposed to the landfill or used as fertilizer.A sustainable management system for the Aloe vera processing waste should be considered,due to the negative societal and environmental impacts of the currents waste disposal methods.Therefore,this review focuses on various approaches that can be used to valorize Aloe vera waste into value-added products,such as animal and aquaculture feeds,biosorbents,biofuel and natural polymers.Researchers have reported Aloe vera waste for environmental applications biosorbents used for wastewater treatment of various pollutants.Several studies have also reported on the valorization of Aloe vera waste for production of biofuels such as bioethanol,mixed alcohol fuels,biogas and syngas.Aloe vera waste could also be valorized through isolation and synthesis of natural polymers for application in wound dressing,tissue engineering and drug delivery systems.Aloe vera waste valorization was also reviewed through extraction of value-added bioactive compounds such as aloe-emodin,aloin and aloeresin.These value-added bioactive compounds have various applications in the cosmetics(non-steroidal anti-inflammatory,tyrosinase inhibitors)and pharmaceutical(anticancer agent and COVID 19 inhibitors)industry. 展开更多
关键词 Aloe vera waste processing biomass conversion ANTHRAQUINONE ALOE-EMODIN ALOIN aloeresin
下载PDF
Recent advances in the electrocatalytic oxidative upgrading of lignocellulosic biomass
14
作者 Yufeng Qi Hairui Guo +5 位作者 Junting Li Li Ma Yang Xu Huiling Liu Cheng Wanga Zhicheng Zhang 《ChemPhysMater》 2024年第2期157-186,共30页
Lignocellulosic biomass is a critical renewable carbon resource,but most of its utilization is inefficient,and elec-trocatalytic oxidation is a promising method of upgrading lignocellulose into value-added fuels and c... Lignocellulosic biomass is a critical renewable carbon resource,but most of its utilization is inefficient,and elec-trocatalytic oxidation is a promising method of upgrading lignocellulose into value-added fuels and chemicals under mild operating conditions.Recently,efforts to enable conversion with a high efficiency and low energy con-sumption have been reported,but understanding the reaction mechanisms and realizing scaled-up applications of the electrooxidation of lignocellulosic biomass are still in their early stages.A timely overview of recently reported general reaction mechanisms,particularly the strategies developed for use in improving the reaction efficiencies,is necessary to inspire research regarding the highly efficient utilization of lignocellulose.Herein,we summa-rize the strategies developed to improve electrocatalytic performance in oxidative lignocellulose conversion.The organized summary includes strategies ranging from designing efficient electrocatalysts and adding functional co-catalysts or electrolytes to employing advanced electrolyzers.A comprehensive overview of representative examples should provide universal principles to yield insight into the reaction processes and guide the design of efficient electrocatalytic systems.Finally,the challenges and opportunities in developing the electrocatalytic oxidative upgrading of lignocellulosic biomass in the near future are proposed. 展开更多
关键词 biomass conversion LIGNOCELLULOSE ELECTROCATALYSIS Oxidative upgrading ELECTROCATALYST
原文传递
基于等转化率法的芒草和玉米秸秆热解特性及动力学研究 被引量:9
15
作者 姚灿 田红 +2 位作者 覃静萍 刘正伟 胡章茂 《林产化学与工业》 EI CAS CSCD 北大核心 2018年第1期93-100,共8页
利用热重分析仪对芒草和玉米秸秆在不同升温速率(5、10、20和40℃/min)下的热解特性进行了研究,并采用Kissinger-Akahira-Sunose(KAS)、Starink和Ozawa等转化率法研究了其热解动力学特性。结果表明:芒草和玉米秸秆热解过程可分为干燥失... 利用热重分析仪对芒草和玉米秸秆在不同升温速率(5、10、20和40℃/min)下的热解特性进行了研究,并采用Kissinger-Akahira-Sunose(KAS)、Starink和Ozawa等转化率法研究了其热解动力学特性。结果表明:芒草和玉米秸秆热解过程可分为干燥失水、过渡、主热解和炭化4个阶段;随着升温速率增加,热解各阶段均向高温侧移动,失重率增加,表明升温速率增加可促进热解反应的进行。动力学计算结果表明:3种方法拟合的相关系数均大于0.9,且芒草的相关系数大于玉米秸秆;芒草的活化能,KAS和Starink法计算得到的结果很接近,Ozawa法较低;而玉米秸秆的活化能,Ozawa法得到的最高,Starink法居中,KAS法最低。在整个热解过程中,3种方法求得的芒草的活化能随转化率升高波动明显,表明芒草热解过程发生了一系列复杂的化学反应;转化率为0.1~0.3、0.3~0.7及0.7~0.8时,分别对应半纤维素、纤维素及木质素的主热解阶段,这表明芒草三组分热解难易程度为木质素>纤维素>半纤维素。而玉米秸秆则不太一样,转化率为0.1~0.4时,玉米秸秆活化能急剧增加;转化率为0.4~0.8时,玉米秸秆活化能缓慢下降直至平稳。 展开更多
关键词 生物质 热解动力学 等转化率法 热解特性
下载PDF
生物质热解过程两种动力学分析方法的比较 被引量:9
16
作者 谢华清 于庆波 +1 位作者 秦勤 张海涛 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期845-848,共4页
利用Coats-Redfern法和Starink等转化率法对松球和玉米芯两种生物质的热解过程进行动力学分析.Coats-Redfern法需事先假设或筛选动力学模型,采用Malek法对动力学模型进行了筛选,松球、玉米芯热解过程分别符合D3,R2模型.Starink等转化率... 利用Coats-Redfern法和Starink等转化率法对松球和玉米芯两种生物质的热解过程进行动力学分析.Coats-Redfern法需事先假设或筛选动力学模型,采用Malek法对动力学模型进行了筛选,松球、玉米芯热解过程分别符合D3,R2模型.Starink等转化率法不需模型假设即可进行动力学求解,求得的活化能比由Coats-Redfern法求得的活化能高.由Starink等转化率法求得玉米芯的活化能在整个热解过程中变化较小,可以用单一机理函数描述,而松球的活化能在整个热解过程中变化较大,不可以用单一机理函数描述. 展开更多
关键词 生物质 热解 动力学 Coats-Redfern法 等转化率法
下载PDF
等转化率法对生物质热解动力学的研究 被引量:7
17
作者 张海涛 于庆波 +1 位作者 秦勤 谢华清 《热力发电》 CAS 北大核心 2014年第1期57-60,84,共5页
采用Starink等转化率法对玉米芯和花生壳的热解过程进行了动力学求解,在不同的转化率下玉米芯的活化能变化较小,基本在(208.11±7.11)kJ/mol,而花生壳的活化能则变化较大。同时,采用主曲线法对玉米芯热解过程进行机理函数筛选,当转... 采用Starink等转化率法对玉米芯和花生壳的热解过程进行了动力学求解,在不同的转化率下玉米芯的活化能变化较小,基本在(208.11±7.11)kJ/mol,而花生壳的活化能则变化较大。同时,采用主曲线法对玉米芯热解过程进行机理函数筛选,当转化率小于0.6时,玉米芯热解过程遵循四级反应;当转化率大于0.6时,玉米芯热解过程遵循三级反应。 展开更多
关键词 生物质 玉米芯 花生壳 热解 动力学分析 等转化率法
下载PDF
Surface functionalized Pt/SnNb_(2)O_(6)nanosheets for visible-light-driven the precise hydrogenation of furfural to furfuryl alcohol
18
作者 Yingzhang Shi Huan Wang +4 位作者 Zhiwen Wang Cheng Liu Mingchuang Shen Taikang Wu Ling Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期566-575,I0015,共11页
Photocatalytic upgrading of renewable biomass is a promising way to relieve energy crisis and environmental pollution.However,low photocatalytic efficiency and uncontrollable selectivity still limit its development.He... Photocatalytic upgrading of renewable biomass is a promising way to relieve energy crisis and environmental pollution.However,low photocatalytic efficiency and uncontrollable selectivity still limit its development.Herein,ultrathin SnNb_(2)O_(6)nanosheets with high dispersed Pt nanoparticles(Pt/SN)were successfully developed as an efficient photocatalyst for the precise hydrogenation of furfural(FUR)to furfuryl alcohol(FOL)under visible light irradiation and exhibited the high conversion of FUR(99.9%)with the high selectivity for FOL(99.9%).It was revealed that SN with only 4.1 nm thickness possess good separation ability of photo-generated carriers and abundant surface Lewis acid sites(Nb^(5+))which would selectively chemisorb and activate FUR molecules via the Nb···O=C coordination.Meanwhile,Pt nanoparticles would gather photo-generated electrons for greatly promoting the generation of active H species to support the hydrogenation of FUR to FOL.The synergistic effects between SnNb_(2)O_(6)nanosheets and Pt nanoparticles remarkably facilitate the photocatalytic performance for hydrogenation.This work not only confirms the great potential of ultrathin nanosheet photocatalyst with functional metal sites for precise upgrading of biomass but also provides an in-depth view to understand the surface/interface interaction between reactant molecules and surface sites of a photocatalyst. 展开更多
关键词 biomass conversion Hydrogenation of furfural Two-dimensional materials Sn2NbO6 nanosheet Pt nanoparticle PHOTOCATALYSIS
下载PDF
Synergistic engineering of cobalt selenide and biomass-derived S,N,P co-doped hierarchical porous carbon for modulation of stable Li-S batteries
19
作者 Yang Lin Song He +5 位作者 Zhiyong Ouyang Jianchao Li Jie Zhao Yanhe Xiao Shuijin Lei Baochang Cheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第3期11-21,共11页
Hierarchical porous carbon co-doped with heterogeneous atoms has attracted much attention thanks to sizable internal void space accommodating electrolyte,high-density microporous structure physically con-fining polysu... Hierarchical porous carbon co-doped with heterogeneous atoms has attracted much attention thanks to sizable internal void space accommodating electrolyte,high-density microporous structure physically con-fining polysulfides(LPS),and heterogeneous atoms serving as active sites to capture LPS.However,solely relying on carbon material defects to capture LPS proves ineffective.Hence,metal compounds must be introduced to chemisorb LPS.Herein,cobalt ions are in-situ grown on the polydopamine layer coated on the surface of biomass-derived S,N,P co-doped hierarchical porous carbon(SNP-PC).Then a layer of nitrogen-doped porous carbon(MPC)dotted with CoSe nanoparticles is acquired by selenizing.Thus,a strong-polar/weak-polar composite material of SNP-PC studded with CoSe nanoparticles is obtained(SNP-PC@MPC@CoSe).Button cells assembled with SNP-PC@MPC@CoSe-modified separator enable superb long-cycle stability and satisfactory rate performance.An excellent rate capacity of 796 mAh g^(−1)at a high current rate of 4 C with an ultra-low capacity fading of 0.06%over 700 cycles can be acquired.More impressively,even in a harsh test condition of 5.65 mg cm^(−2)sulfur loading and 4μL mg^(−1)ratio of electrolyte to active materials,the battery can still display a specific capacity of 980 mAh g^(−1)(area capacity of∼5.54 mAh cm^(−2))at 0.1 C.This work provides a promising route toward high-performance Li-S batteries. 展开更多
关键词 Lithium-sulfur battery biomass conversion S N P-codoped porous carbon CoSe modulation Multifunctional separator Synergism of strong and weak polarity
原文传递
Characterization of glucose isomerase-producing bacteria and optimization of fermentation conditions for producing glucose isomerase using biomass
20
作者 Aristide Laurel Mokale Kognou Chonlong Chio +7 位作者 Janak Raj Khatiwada Sarita Shrestha Xuantong Chen Hongwei Li Yuen Zhu Zi-Hua Jiang Chunbao(Charles)Xu Wensheng Qin 《Green Chemical Engineering》 EI CSCD 2023年第2期239-249,共11页
Glucose isomerase(GI)is an enzyme with high potential applications.Characterization of GI producing bacteria with interesting properties from an industrial point of view is essential.Bacillus sp.,Paenarthrobacter sp.,... Glucose isomerase(GI)is an enzyme with high potential applications.Characterization of GI producing bacteria with interesting properties from an industrial point of view is essential.Bacillus sp.,Paenarthrobacter sp.,Chryseobacterium sp.,Hymenobacter sp.,Mycobacterium sp.,and Stenotrophomonas sp.were isolated from soil samples.Optimization of enzyme production yield was investigated in various fermentation conditions using response surface methodology.All isolates exhibited maximum GI activity at 40℃,pH 6–8 after 4 days of incubation.A mixture of peptone/yeast extract or tryptone/peptone enhanced higher enzyme production.The same trend was observed in fermentation medium containing 1%xylose or 2%–2.5%wheat straw.This study advanced the knowledge of these bacterial isolates in promoting wheat straw as feedstock for the bio-based industry. 展开更多
关键词 Cellulolytic bacteria Glucose/xylose isomerase 16S rRNA biomass conversion
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部