期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Numerical analysis on the transport properties and residence time distribution of ribbon biomass particles in a riser reactor based on CFD-DEM approach
1
作者 Haichao Zhao Conghui Gu +6 位作者 Bingyang Xu Yuan Liu Mingpu Du Kaiyuan Deng Jingyu Zhu Iana Voronina Zhulin Yuan 《Particuology》 SCIE EI CAS CSCD 2024年第4期133-146,共14页
A bended ribbon biomass particle model was developed to explore the dynamic transport properties inside a riser reactor.Residence time distribution(RTD)of the particles was analyzed by using the Eulerian-Lagrange meth... A bended ribbon biomass particle model was developed to explore the dynamic transport properties inside a riser reactor.Residence time distribution(RTD)of the particles was analyzed by using the Eulerian-Lagrange method.The effects of sampling height,particle density,particle size and gas-to-solid mass ratio on RTD were investigated.The coupled Computational Fluid Dynamics and Discrete Element Method(CFD-DEM)model was verified firstly by experimental data on pressure drop and residence time distribution density function.The simulation results demonstrated that the ribbon biomass particles display a typical annular-core spatial distribution during transportation.The RTD of particles exhibit an approximate single-peaked normal distribution.The mean residence time(MRT)can reach up to 0.7 s when the particle density is 1200 kg/m^(3).Particle with higher density has longer mean residence time.The flow patterns are closer to plug flow if particle length over 12 mm.The particle flow pattern is not sensitive to changes in particle density and size,while the gas-to-material mass ratio has a significant impact on it. 展开更多
关键词 RISER Gas-solids two-phase flow Ribbon biomass particles Residence time distribution CFD-DEM
原文传递
Pyrolysis of single large biomass particle: Simulation and experiments 被引量:2
2
作者 Kai Wang Huiyan Zhang +1 位作者 Sheng Chu Zhenting Zha 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期375-382,共8页
Pyrolysis and heat transfer characteristics of single large biomass particle were investigated using threedimensional unsteady heat transfer model coupled with chemical reactions.The consumption of biomass and the pro... Pyrolysis and heat transfer characteristics of single large biomass particle were investigated using threedimensional unsteady heat transfer model coupled with chemical reactions.The consumption of biomass and the production of products were simulated.Some experiments were designed to provide model parameters for simulation calculations.The simulation was verified by pyrolysis experiments of large biomass particle in a vertical tube furnace.The simulation results show the internal heat and mass transfer law during the pyrolysis of large biomass particle.When the biomass particle diameter is between 10 and 30 mm,for every 5 mm increase in particle diameter,the time required for complete pyrolysis will increase on average by about 50 s.When the pyrolysis temperature is between 673 K and 873 K,a slight decrease in the pyrolysis temperature will cause the time required for the biomass to fully pyrolyze to rise significantly.And the phenomenon is more obvious in the low temperature range.The results indicate that the numerical simulation agrees well with the experimental results. 展开更多
关键词 PYROLYSIS Large biomass particle SIMULATION Heat/mass transfer
下载PDF
Multi-3D hierarchical biomass-based carbon particles absorber for solar desalination and thermoelectric power generator 被引量:1
3
作者 Hao Jiang Xuemin Geng +5 位作者 Simin Li Hongyu Tu Jiliang Wang Lixia Bao Peng Yang Yanfen Wan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第24期180-188,共9页
To meet challenges of the global energy crisis and the freshwater resources shortage,the interfacial solarto-steam conversion(ISSC)system was developed quickly in recent years.The photothermal materials play an import... To meet challenges of the global energy crisis and the freshwater resources shortage,the interfacial solarto-steam conversion(ISSC)system was developed quickly in recent years.The photothermal materials play an important role in the ISSC system.We are devoted to developing a unique photothermal material integrating multiple 3 D design philosophy both at macroscopic and microscopic levels by employing the cost-effective and widespread resources like straw,rose and coffee grounds,for carbonization as solar absorbers.The biomass-based carbonized particles(CPs)possess three major advantages:(1)wide sizedistribution is accessible to form 3 D porous rough surface of absorber layer to enhance ability of light absorption;(2)the pristine hierarchical microstructure could absorb nearly all the incident light;(3)the intrinsic vascular bundles with pores on their lumen walls provide a rapid and omnidirectional transport for water and steam escape.A high-efficient solar steam device was fabricated based on the absorber material with its internal 3 D micro textures and external 3 D architectures.Under the illumination of 1 sun,the photothermal conversion efficiency of straw,rose and coffee CPs can reach 93.4%,92.8% and 76%,respectively.Simultaneously,a high-efficient solar thermoelectric generator(STEG)is made by coating CPs on a commercial thermoelectric generator and the maximum power of STEG can reach 538.0μW.Such scalable biomass-based photothermal materials and high-grade thermoelectric conversion capability could be applied to the water purification and the electricity production. 展开更多
关键词 Interfacial solar-to-steam conversion biomass carbon particles 3D porous absorber Omnidirectional water transport Steam escape
原文传递
The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips 被引量:1
4
作者 Sandra J. A. van Kuijk Anton S. M. Sonnenberg +2 位作者 Johan J. P. Baars Wouter H. Hendriks John W. Cone 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第1期217-225,共9页
Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinul... Background: The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains(0.5, 1.5 or 3.0 % per g of wet weight of substrate) added to the substrates. Also, wheat straw and wood chips were chopped to either 0.5 or 2 cm.Effectiveness of the fungal treatment after 0, 2, 4, 6, or 8 wk of incubation was determined by changes in chemical composition, in vitro gas production(IVGP) as a measure for rumen degradability, and ergosterol content as a measure of fungal biomass.Results: Incomplete colonization was observed for C. subvermispora treated wheat straw and L. edodes treated wood chips. The different particle sizes and amounts of inoculum tested, had no significant effects on the chemical composition and the IVGP of C. subvermispora treated wood chips. Particle size did influence L.edodes treatment of wheat straw. The L. edodes treatment of 2 cm wheat straw resulted in a more selective delignification and a higher IVGP than the smaller particles. Addition of 1.5 % or 3 % L. edodes inoculum to wheat straw resulted in more selective delignification and a higher IVGP than addition of 0.5 % inoculum.Conclusion: Particle size and amount of inoculum did not have an effect on C. subvermispora treatment of wood chips. At least 1.5 % L. edodes colonized millet grains should be added to 2 cm wheat straw to result in an increased IVGP and acid detergent lignin(ADL) degradation. 展开更多
关键词 Amount of inoculum Fungal treatment In vitro rumen degradability Lignin degradation Lignocellulosic biomass Particle size
下载PDF
Characterization of submicron particles during autumn in Beijing,China 被引量:6
5
作者 Peng Xu Junke Zhang +4 位作者 Dongsheng Ji Zirui Liu Guiqian Tang Changsheng Jiang Yuesi Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第1期16-27,共12页
In this study, we performed a highly time-resolved chemical characterization of nonrefractory submicron particles(NR-PM_1) in Beijing by using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer(HR... In this study, we performed a highly time-resolved chemical characterization of nonrefractory submicron particles(NR-PM_1) in Beijing by using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer(HR-ToF-AMS). The results showed the average NR-PM_1 mass concentration to be 56.4 ± 58.0 μg/m^3, with a peak at 307.4 μg/m^3. Due to the high frequency of biomass burning in autumn, submicron particles significantly increased in organic content, which accounted for 51% of NR-PM_1 on average. Secondary inorganic aerosols(sulfate + nitrate + ammonium) accounted for 46% of NR-PM_1, of which sulfate,nitrate, and ammonium contributed 15%, 20%, and 11%, respectively. To determine the intrinsic relationships between the organic and inorganic species, we used the positive matrix factorization(PMF) model to merge the high-resolution mass spectra of the organic species and NO+and NO_2~+ions. The PMF analysis separated the mixed organic and nitrate(NO+and NO_2~+) spectra into four organic factors, including hydrocarbon-like organic aerosol(HOA), oxygenated organic aerosol(OOA), cooking organic aerosol(COA), and biomass burning organic aerosol(BBOA), as well as one nitrate inorganic aerosol(NIA) factor. COA(33%) and OOA(30%) contributed the most to the total organic aerosol(OA) mass, followed by BBOA(20%) and HOA(17%). We successfully quantified the mass concentrations of the organic and inorganic nitrates by the NO+and NO2+ions signal in the organic and NIA factors. The organic nitrate mass varied from 0.01-6.8 μg/m^3, with an average of 1.0 ±1.1 μg/m^3, and organic nitrate components accounted for 10% of the total nitrate mass in this observation. 展开更多
关键词 Submicron particles biomass burning Source apportionment Organic and inorganic nitrates
原文传递
Individual particle analysis of aerosols collected at Lhasa City in the Tibetan Plateau 被引量:4
6
作者 Bu Duo Yunchen Zhang +5 位作者 Lingdong Kong Hongbo Fu Yunjie Hu Jianmin Chen Lin Li A.Qiong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第3期165-177,共13页
To understand the composition and major sources of aerosol particles in Lhasa City on the Tibetan Plateau (TP), individual particles were collected from 2 February to 8 March, 2013 in Tibet University. The mean conc... To understand the composition and major sources of aerosol particles in Lhasa City on the Tibetan Plateau (TP), individual particles were collected from 2 February to 8 March, 2013 in Tibet University. The mean concentrations of both PM2.5 and PM10 during the sampling were 25.7 ± 21.7 and 57.2 ± 46.7 μg/m^3, respectively, much lower than those of other cities in East and South Asia, but higher than those in the remote region in TP like Nam Co, indicating minor urban pollution. Combining the observations with the meteorological parameters and back trajectory analysis, it was concluded that local sources controlled the pollution during the sampling. Transmission electron microscopy (TEM) combined with energydispersive X-ray spectra (EDS) was used to study 408 particles sampled on four days. Based on the EDS analysis, a total of 8 different particle categories were classified for all 408 particles, including Si-rich, Ca-rich, soot, K-rich, Fe-rich, Pb-rich, Al-rich and other particles. The dominant elements were Si, A1 and Ca, which were mainly attributed to mineral dust in the earth's crust such as feldspar and clay. Fe-, Pb-, K-, Al-rich particles and soot mainly originated from anthropogenic sources like firework combustion and biomass burning during the sampling. During the sampling, the pollution mainly came from mineral dust, while the celebration ceremony and religious ritual produced a large quantity of anthro- pogenic metal-bearing particles on 9 and 25 February 2013. Cement particles also had a minor influence. The data obtained in this study can be useful for developing pollution control strategies. 展开更多
关键词 Individual particles Fireworks biomass burning Lhasa TEM
原文传递
Seasonal size-segregated PM10 and PAH concentrations in a rural area of sugarcane agriculture versus a coastal urban area in Southeastern Florida, USA 被引量:1
7
作者 Orhan Sevimoglu Wolfgang F. Rogge 《Particuology》 SCIE EI CAS CSCD 2016年第5期52-59,共8页
Airborne particulate matter (PM) is of health and environmental concern not only in highly urbanized areas, but also in rural areas that are used for intensive agricultural purposes, In this study, PM size- segregat... Airborne particulate matter (PM) is of health and environmental concern not only in highly urbanized areas, but also in rural areas that are used for intensive agricultural purposes, In this study, PM size- segregated samples were collected simultaneously for 12 months in a small town (Belle Glade, Florida), which is the center of a vast sugarcane growing area and at Delray Beach, a coastal city in Palm Beach County, Florida. During the winter sampling period, when sugarcane foliage is burned just before harvest- ing to reduce the amount of plant matter to be handled, PM10 levels were 50% or higher than otherwise measured, indicating that sugarcane harvesting and processing is a major local source for PM10. For the rest of the year, PM10 levels at both sites are similar, suggesting that ambient PM levels at both sites are impacted by the major urban centers in Southern Florida. During late July and early August, the PM10 levels at both sites were substantially elevated and revealed the typical red-brownish color of Saharan dust. This has been reported to occur frequently with suitable meteorological conditions over the Atlantic Ocean coupled with a Sahara dust storm event. During the sugarcane harvesting season at Belle Glade, the concentrations of PAHs associated with PM10 were up to 15 times higher than those measured during the summer growing season, indicating a substantially higher exposure of the rural population to these often mutagenic and carcinogenic compounds. 展开更多
关键词 Size segregated ambient particles PM10 PAHs biomass burning Rural versus urban Saharan dust
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部