Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid...Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid fuels via thermochemical,chemical or biological approaches.Typical biomass derived fuels include syngas,bio-gas,bio-oil,bioethanol and biochar,all of which could be used as fuels for furnace,engine,turbine or fuel cells.Direct biomass fuel cells mediated by various electron carriers provide a new direction of lignocellulose conversion.Various metal and non-metal based carriers have been screened for mediating the electron transfer from biomass to oxygen thus generating electricity.The power density of direct biomass fuel cells can be over 100 mW cm^(-2),which shows promise for practical applications.Lignocellulose and its isolated components,primarily cellulose and lignin,have also been paid considerable attention as sustainable carbonaceous materials for preparation of electrodes for supercapacitors,lithium-ion batteries and lithium-sulfur batteries.In this paper,we have provided a state-of-the-art review on the research progress of lignocellulosic biomass as feedstock and materials for power generation and energy storage focusing on the chemistry aspects of the processes.It was recommended that process integration should be performed to reduce the cost for thermochemical and biological conversion of lignocellulose to biofuels,while efforts should be made to increase efficiency and improve the properties for biomass fuelled fuel cells and biomass derived electrodes for energy storage.展开更多
Facing the pressure of fossil energy exhaustion and environment pollution, people begin to search for clean and renewable energy to partly substitute fossil energy and realize sustainable development. As the fourth ty...Facing the pressure of fossil energy exhaustion and environment pollution, people begin to search for clean and renewable energy to partly substitute fossil energy and realize sustainable development. As the fourth type of energy, biomass energy has many advantages: wide distribution, large quantity, being renewable, clean, storable and transportable and so on. By adopting thermo-chemical and biochemical technologies, biomass energy can be converted to high quality solid, liquid and gaseous energy products, and provide convenient heat and power energy for human being’s production and daily life. This paper presented the status quo of biomass power generation industry in China and also introduced briefly the future development models.展开更多
With the vigorous growth of animal husbandry, animal feces in the agriculture sector gradually deteriorate the environment. The chicken manure power generation is becoming viable and useful for energy conversion to co...With the vigorous growth of animal husbandry, animal feces in the agriculture sector gradually deteriorate the environment. The chicken manure power generation is becoming viable and useful for energy conversion to comply with the context of environmental protection in China. Based on resource endowments and technical conditions, this paper studies the current situation of chicken manure power generation in China. Combined with the policy environment, the research conducts a PEST-SWOT matrix analysis to thoroughly look into the strengths and weaknesses, the opportunities and challenges. Then, the paper analyzes the distribution of chicken manure and gives some solutions from respects of government regulatory behavior, industrial-organizational behavior and corporation strategic behavior. Finally, it is concluded that: 1) the government should strengthen policy support by actively improving the subsidy mechanism and lowering the threshold of financing and credit;2) enterprises should focus on improving power generation technology and boiler treatment technology.展开更多
In the last decades the interest in the biomass gasification process has increased due to the growing attention to the use of sustainable energy. Biomass is a renewable energy source and represents a valid alternative...In the last decades the interest in the biomass gasification process has increased due to the growing attention to the use of sustainable energy. Biomass is a renewable energy source and represents a valid alternative to fossil fuels. Gasification is the thermochemical conversion of an organic material into a valuable gaseous product, called syngas, and a solid product, called char. The biomass gasification represents an efficient process for the production of power and heat and the production of hydrogen and second-generation biofuels.This paper deals with the state of the art biomass gasification technologies, evaluating advantages and disadvantages, the potential use of the syngas and the application of the biomass gasification. Syngas cleaning though fundamental to evaluate any gasification technology is not included in this paper since; in the authors' opinion, a dedicated review is necessary.展开更多
In this paper,we present five basic types of renewable energy sources,namely:wind turbines,solar cells,small hydroelectric plants,biomass,and geothermal sources of energy.Wind turbines transform energy of wind into el...In this paper,we present five basic types of renewable energy sources,namely:wind turbines,solar cells,small hydroelectric plants,biomass,and geothermal sources of energy.Wind turbines transform energy of wind into electrical energy,solar cells transform energy of sun into electric energy,hydroelectric plants transform energy of water into electric energy,devices or machines can be constructed to transform energy of biomass into heat energy,and geothermal energy into some form of energy.In this paper we present basic information and reasons why there is need today to use these forms of energy—called green energies,we present how these devices or machines function,and we propose for future work design of typical devices or machines that will satisfy basic functional needs.展开更多
Power generation using straw biomass has quantifiable benefits from an economic,ecological,and sociological perspective in China.The methods used to construct the assessment models of these integrated benefits were th...Power generation using straw biomass has quantifiable benefits from an economic,ecological,and sociological perspective in China.The methods used to construct the assessment models of these integrated benefits were the revenue capitalization approach and the discounted-cash-flow approach.The results indicated that a straw power plant with the capacity of 2.50×10^(7)W and burning 1.23×10^(5)tons of cotton straw could annually supply 1.40×10^(8)kWh of power.However,it would not be until six years later that these results could be measured.Over the long term,the gross benefits could reach up to 4.63×10^(8)Yuan.Therefore,the total benefits are expected to be 1.18×10^(12)Yuan if all available straw resources are used to generate power.The policy implication showed that the long-term integrated benefits of power generation by straw biomass outweighed the short-term benefits.This is the main incentive to use straw biomass for power generation in the future.展开更多
The present research work has been carried out on biomass based on 10 kW capacity gasifier power generation system installed at College of Agricultural Engineering and Technology,Dr.Panjabrao Deshmukh Agricultural Uni...The present research work has been carried out on biomass based on 10 kW capacity gasifier power generation system installed at College of Agricultural Engineering and Technology,Dr.Panjabrao Deshmukh Agricultural University(Dr.PDKV),Akola Maharashtra,India.The main objectives were to evaluate various costs and benefits involved in the power generation system.The costs of energy per unit were calculated for the first year of operation.The economics of gasifier based power generation system and thereby the feasibility of the system was examined by estimating per unit cost,Net Present Value(NPV),Benefit Cost Ratio(BCR),Internal Rate of Return(IRR)and payback period.The discount cash flow method was used to find out the IRR.In the present analysis,three costs viz.,installed capital cost,operation and maintenance cost,and levelised replacement cost were examined for the evaluation of the power generation per unit.Discount rate on investment in case of subsidy(Case I)and in case without subsidy(Case II)for installation cost of system was considered as 12.75%.The BCR comes in Case I for operating duration of 22 h,20 h,and 16 h are 1.24,1.18,and 1.13,respectively.Similarly for Case II BCR comes 1.44,1.38,and 2.39.The IRR comes in Case I for operating duration of 22 h,20 h,and 16 h are 26%,22%,and 19%,respectively.Similarly for Case II,IRR comes 52%,44%,and 39%for operating duration of 22 h,20 h,and 16 h,respectively.The payback period in the present analysis was worked out.The payback period for biomass based gasifier power generation system was observed to be for Case I from three to four years and for Case II it was one to two years.展开更多
To reduce greenhouse gas emissions from fossil fuel fired power plants,a range of new combustion technologies are being developed or refined,including oxy-fuel combustion,co-firing biomass with coal and fluidized bed ...To reduce greenhouse gas emissions from fossil fuel fired power plants,a range of new combustion technologies are being developed or refined,including oxy-fuel combustion,co-firing biomass with coal and fluidized bed combustion.Flame characteristics under such combustion conditions are expected to be different from those in normal air fired combustion processes.Quantified flame characteristics such as temperature distribution,oscillation frequency,and ignition volume play an important part in the optimized design and operation of the environmentally friendly power generation systems.However,it is challenging to obtain such flame characteristics particularly through a three-dimensional and non-intrusive means.Various tomography methods have been proposed to visualize and characterize flames,including passive optical tomography,laser based tomography,and electrical tomography.This paper identifies the challenges in flame tomography and reviews existing techniques for the quantitative characterization of flames.Future trends in flame tomography for industrial applications are discussed.展开更多
The prices of fossil fuels,the gap between energy supply and demand,energy security,environmental issues,and the reduction of greenhouse gas emissions commonly promote the development of biomass power generation in Ch...The prices of fossil fuels,the gap between energy supply and demand,energy security,environmental issues,and the reduction of greenhouse gas emissions commonly promote the development of biomass power generation in China.Compared to direct biomass combustion power generation and biogas power generation,liquid biofuel power generation has better application potential.Policies and finance environment of countries and organizations have promoted the extensive application of biofuel power generation in recent years,especially in China.Evaluation of internal combustion engine,gas turbine and fuel cell on the stationary power station and mobile generation shows that gas turbine is the main generator-set,the fuel cell is the fastest-growing and future generator-set,while the engine is the first choice in transport and low power generation field.As the second,third and fourth generation biofuels,biomethanol,bioethanol,biodiesel and others have been researched and widely used in power generation.In addition,power generation performance and emissions have been improved to some extent after biofuels supplying.For the future,combined heat and power(CHP)generation and integrated gasification combined cycle(IGCC)is imperative development trends of power generation for higher energy and exergy efficiency.CHP based on the various generating facilities will be the next choice and direction of energy use trends for transport.展开更多
Between 2018 and 2020, an average of 15 TWh of energy peat was consumed in Finland. Energy peat is used in 260 boilers in Finland, which produce district heat and heat and steam for industry, as well as electricity as...Between 2018 and 2020, an average of 15 TWh of energy peat was consumed in Finland. Energy peat is used in 260 boilers in Finland, which produce district heat and heat and steam for industry, as well as electricity as cogeneration (CHP) in connection with district heating and industrial heat production. Peat accounts for 3% - 5% of the energy sources used in Finland, but its importance has been greater in terms of security of supply. With current use in accordance with the 2018-2020 average, the emissions from peat are almost 6 Mt CO<sub>2</sub> per year in Finland, which is 15% of emissions from the energy sector. In this study, the technical limitations related to peat burning, economic limitations related to the availability of biomass, and socio-economic limitations related to the regional economy are reviewed. By 2040, the technical minimum use of peat will fall to 2 TWh. The techno-economical potential may be even lower, but due to socio-economic objectives, peat production will not be completely ceased. The reduction in the minimum share assumes that old peat boilers are replaced with new biomass boilers or are alternatively replaced by other forms of heat production. Based on the biomass reserves, the current use of peat can be completely replaced by forest chips, but regional challenges may occur along the coast and in southern Finland. It is unlikely that the current demand for all peat will be fully replaced by biomass when part of CHP production is replaced by heat production alone and combustion with waste heat sources.展开更多
基金supported by the National Natural Science Foundation of China(No.21878176)National Key Research and Development Program of China(No.2018YFA0902200)financially supported by the Imperial College President’s PhD Scholarship Scheme。
文摘Lignocellulosic biomass has attracted great interest in recent years for energy production due to its renewability and carbon-neutral nature.There are various ways to convert lignocellulose to gaseous,liquid and solid fuels via thermochemical,chemical or biological approaches.Typical biomass derived fuels include syngas,bio-gas,bio-oil,bioethanol and biochar,all of which could be used as fuels for furnace,engine,turbine or fuel cells.Direct biomass fuel cells mediated by various electron carriers provide a new direction of lignocellulose conversion.Various metal and non-metal based carriers have been screened for mediating the electron transfer from biomass to oxygen thus generating electricity.The power density of direct biomass fuel cells can be over 100 mW cm^(-2),which shows promise for practical applications.Lignocellulose and its isolated components,primarily cellulose and lignin,have also been paid considerable attention as sustainable carbonaceous materials for preparation of electrodes for supercapacitors,lithium-ion batteries and lithium-sulfur batteries.In this paper,we have provided a state-of-the-art review on the research progress of lignocellulosic biomass as feedstock and materials for power generation and energy storage focusing on the chemistry aspects of the processes.It was recommended that process integration should be performed to reduce the cost for thermochemical and biological conversion of lignocellulose to biofuels,while efforts should be made to increase efficiency and improve the properties for biomass fuelled fuel cells and biomass derived electrodes for energy storage.
基金Technical Supporting Programs funded by Ministry of Science and Technology (MOST) of China(No. 2006BAD07A14 No. 2006BDA11A11)
文摘Facing the pressure of fossil energy exhaustion and environment pollution, people begin to search for clean and renewable energy to partly substitute fossil energy and realize sustainable development. As the fourth type of energy, biomass energy has many advantages: wide distribution, large quantity, being renewable, clean, storable and transportable and so on. By adopting thermo-chemical and biochemical technologies, biomass energy can be converted to high quality solid, liquid and gaseous energy products, and provide convenient heat and power energy for human being’s production and daily life. This paper presented the status quo of biomass power generation industry in China and also introduced briefly the future development models.
文摘With the vigorous growth of animal husbandry, animal feces in the agriculture sector gradually deteriorate the environment. The chicken manure power generation is becoming viable and useful for energy conversion to comply with the context of environmental protection in China. Based on resource endowments and technical conditions, this paper studies the current situation of chicken manure power generation in China. Combined with the policy environment, the research conducts a PEST-SWOT matrix analysis to thoroughly look into the strengths and weaknesses, the opportunities and challenges. Then, the paper analyzes the distribution of chicken manure and gives some solutions from respects of government regulatory behavior, industrial-organizational behavior and corporation strategic behavior. Finally, it is concluded that: 1) the government should strengthen policy support by actively improving the subsidy mechanism and lowering the threshold of financing and credit;2) enterprises should focus on improving power generation technology and boiler treatment technology.
文摘In the last decades the interest in the biomass gasification process has increased due to the growing attention to the use of sustainable energy. Biomass is a renewable energy source and represents a valid alternative to fossil fuels. Gasification is the thermochemical conversion of an organic material into a valuable gaseous product, called syngas, and a solid product, called char. The biomass gasification represents an efficient process for the production of power and heat and the production of hydrogen and second-generation biofuels.This paper deals with the state of the art biomass gasification technologies, evaluating advantages and disadvantages, the potential use of the syngas and the application of the biomass gasification. Syngas cleaning though fundamental to evaluate any gasification technology is not included in this paper since; in the authors' opinion, a dedicated review is necessary.
文摘In this paper,we present five basic types of renewable energy sources,namely:wind turbines,solar cells,small hydroelectric plants,biomass,and geothermal sources of energy.Wind turbines transform energy of wind into electrical energy,solar cells transform energy of sun into electric energy,hydroelectric plants transform energy of water into electric energy,devices or machines can be constructed to transform energy of biomass into heat energy,and geothermal energy into some form of energy.In this paper we present basic information and reasons why there is need today to use these forms of energy—called green energies,we present how these devices or machines function,and we propose for future work design of typical devices or machines that will satisfy basic functional needs.
基金the Post-Graduates′Scientific Research Innovation Projects in Jiangsu Province (No.CX08_052R)the National Outstanding Youth Foundation of NSF ofChina (No.70425002)the National Natural science foundation of China (No.70773058).
文摘Power generation using straw biomass has quantifiable benefits from an economic,ecological,and sociological perspective in China.The methods used to construct the assessment models of these integrated benefits were the revenue capitalization approach and the discounted-cash-flow approach.The results indicated that a straw power plant with the capacity of 2.50×10^(7)W and burning 1.23×10^(5)tons of cotton straw could annually supply 1.40×10^(8)kWh of power.However,it would not be until six years later that these results could be measured.Over the long term,the gross benefits could reach up to 4.63×10^(8)Yuan.Therefore,the total benefits are expected to be 1.18×10^(12)Yuan if all available straw resources are used to generate power.The policy implication showed that the long-term integrated benefits of power generation by straw biomass outweighed the short-term benefits.This is the main incentive to use straw biomass for power generation in the future.
文摘The present research work has been carried out on biomass based on 10 kW capacity gasifier power generation system installed at College of Agricultural Engineering and Technology,Dr.Panjabrao Deshmukh Agricultural University(Dr.PDKV),Akola Maharashtra,India.The main objectives were to evaluate various costs and benefits involved in the power generation system.The costs of energy per unit were calculated for the first year of operation.The economics of gasifier based power generation system and thereby the feasibility of the system was examined by estimating per unit cost,Net Present Value(NPV),Benefit Cost Ratio(BCR),Internal Rate of Return(IRR)and payback period.The discount cash flow method was used to find out the IRR.In the present analysis,three costs viz.,installed capital cost,operation and maintenance cost,and levelised replacement cost were examined for the evaluation of the power generation per unit.Discount rate on investment in case of subsidy(Case I)and in case without subsidy(Case II)for installation cost of system was considered as 12.75%.The BCR comes in Case I for operating duration of 22 h,20 h,and 16 h are 1.24,1.18,and 1.13,respectively.Similarly for Case II BCR comes 1.44,1.38,and 2.39.The IRR comes in Case I for operating duration of 22 h,20 h,and 16 h are 26%,22%,and 19%,respectively.Similarly for Case II,IRR comes 52%,44%,and 39%for operating duration of 22 h,20 h,and 16 h,respectively.The payback period in the present analysis was worked out.The payback period for biomass based gasifier power generation system was observed to be for Case I from three to four years and for Case II it was one to two years.
基金Supported by the National Natural Science Foundation of China(50736002,61072005)the 1000-Talent-Plan,Changjiang Scholars and Innovative Team Development Plan(IRT0952)partly by Research Councils United Kingdom's Energy Programme(EP/G063214/1)
文摘To reduce greenhouse gas emissions from fossil fuel fired power plants,a range of new combustion technologies are being developed or refined,including oxy-fuel combustion,co-firing biomass with coal and fluidized bed combustion.Flame characteristics under such combustion conditions are expected to be different from those in normal air fired combustion processes.Quantified flame characteristics such as temperature distribution,oscillation frequency,and ignition volume play an important part in the optimized design and operation of the environmentally friendly power generation systems.However,it is challenging to obtain such flame characteristics particularly through a three-dimensional and non-intrusive means.Various tomography methods have been proposed to visualize and characterize flames,including passive optical tomography,laser based tomography,and electrical tomography.This paper identifies the challenges in flame tomography and reviews existing techniques for the quantitative characterization of flames.Future trends in flame tomography for industrial applications are discussed.
基金supported by Innovation Capability Support Program of Shaanxi (program no. 2021TD-28)Key Research and Development Program of Shaanxi Province(2019ZDLGY15-07)Natural Science Foundation of Shaanxi Province (2020JQ-385)
文摘The prices of fossil fuels,the gap between energy supply and demand,energy security,environmental issues,and the reduction of greenhouse gas emissions commonly promote the development of biomass power generation in China.Compared to direct biomass combustion power generation and biogas power generation,liquid biofuel power generation has better application potential.Policies and finance environment of countries and organizations have promoted the extensive application of biofuel power generation in recent years,especially in China.Evaluation of internal combustion engine,gas turbine and fuel cell on the stationary power station and mobile generation shows that gas turbine is the main generator-set,the fuel cell is the fastest-growing and future generator-set,while the engine is the first choice in transport and low power generation field.As the second,third and fourth generation biofuels,biomethanol,bioethanol,biodiesel and others have been researched and widely used in power generation.In addition,power generation performance and emissions have been improved to some extent after biofuels supplying.For the future,combined heat and power(CHP)generation and integrated gasification combined cycle(IGCC)is imperative development trends of power generation for higher energy and exergy efficiency.CHP based on the various generating facilities will be the next choice and direction of energy use trends for transport.
文摘Between 2018 and 2020, an average of 15 TWh of energy peat was consumed in Finland. Energy peat is used in 260 boilers in Finland, which produce district heat and heat and steam for industry, as well as electricity as cogeneration (CHP) in connection with district heating and industrial heat production. Peat accounts for 3% - 5% of the energy sources used in Finland, but its importance has been greater in terms of security of supply. With current use in accordance with the 2018-2020 average, the emissions from peat are almost 6 Mt CO<sub>2</sub> per year in Finland, which is 15% of emissions from the energy sector. In this study, the technical limitations related to peat burning, economic limitations related to the availability of biomass, and socio-economic limitations related to the regional economy are reviewed. By 2040, the technical minimum use of peat will fall to 2 TWh. The techno-economical potential may be even lower, but due to socio-economic objectives, peat production will not be completely ceased. The reduction in the minimum share assumes that old peat boilers are replaced with new biomass boilers or are alternatively replaced by other forms of heat production. Based on the biomass reserves, the current use of peat can be completely replaced by forest chips, but regional challenges may occur along the coast and in southern Finland. It is unlikely that the current demand for all peat will be fully replaced by biomass when part of CHP production is replaced by heat production alone and combustion with waste heat sources.