期刊文献+
共找到3,087篇文章
< 1 2 155 >
每页显示 20 50 100
Unleashing the Potential of Electroactive Hybrid Biomaterials and Self‑Powered Systems for Bone Therapeutics
1
作者 Shichang Liu Farid Manshaii +7 位作者 Jinmiao Chen Xinfei Wang Shaolei Wang Junyi Yin Ming Yang Xuxu Chen Xinhua Yin Yunlei Zhou 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期463-497,共35页
The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical ... The incidence of large bone defects caused by traumatic injury is increasing worldwide,and the tissue regeneration process requires a long recovery time due to limited self-healing capability.Endogenous bioelectrical phenomena have been well recognized as critical biophysical factors in bone remodeling and regeneration.Inspired by bioelectricity,electrical stimulation has been widely considered an external intervention to induce the osteogenic lineage of cells and enhance the synthesis of the extracellular matrix,thereby accelerating bone regeneration.With ongoing advances in biomaterials and energy-harvesting techniques,electroactive biomaterials and self-powered systems have been considered biomimetic approaches to ensure functional recovery by recapitulating the natural electrophysiological microenvironment of healthy bone tissue.In this review,we first introduce the role of bioelectricity and the endogenous electric field in bone tissue and summarize different techniques to electrically stimulate cells and tissue.Next,we highlight the latest progress in exploring electroactive hybrid biomaterials as well as self-powered systems such as triboelectric and piezoelectric-based nanogenerators and photovoltaic cell-based devices and their implementation in bone tissue engineering.Finally,we emphasize the significance of simulating the target tissue’s electrophysiological microenvironment and propose the opportunities and challenges faced by electroactive hybrid biomaterials and self-powered bioelectronics for bone repair strategies. 展开更多
关键词 Electroactive biomaterials Self-powered bioelectronics Bone regeneration Bone tissue
下载PDF
Stiffness-tunable biomaterials provide a good extracellular matrix environment for axon growth and regeneration
2
作者 Ronglin Han Lanxin Luo +4 位作者 Caiyan Wei Yaru Qiao Jiming Xie Xianchao Pan Juan Xing 《Neural Regeneration Research》 SCIE CAS 2025年第5期1364-1376,共13页
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p... Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering. 展开更多
关键词 ALGINATE axon growth biomaterials extracellular matrix neural repair neurons NEUROREGENERATION POLYACRYLAMIDE POLYDIMETHYLSILOXANE stiffness
下载PDF
Treatment of spinal cord injury with biomaterials and stem cell therapy in non-human primates and humans
3
作者 Ana Milena Silva Olaya Fernanda Martins Almeida +1 位作者 Ana Maria Blanco Martinez Suelen Adriani Marques 《Neural Regeneration Research》 SCIE CAS 2025年第2期343-353,共11页
Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied fo... Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans. 展开更多
关键词 BIOENGINEERING biomaterials cell therapy humans non-human primates spinal cord injury stem cell therapy
下载PDF
Biomaterials and tissue engineering in traumatic brain injury:novel perspectives on promoting neural regeneration 被引量:2
4
作者 Shihong Zhu Xiaoyin Liu +7 位作者 Xiyue Lu Qiang Liao Huiyang Luo Yuan Tian Xu Cheng Yaxin Jiang Guangdi Liu Jing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2157-2174,共18页
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ... Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential. 展开更多
关键词 bioactive materials biomaterials EXOSOMES neural regeneration scaffolds stem cells tissue engineering traumatic brain injury
下载PDF
Biomaterials and emerging technologies for tissue engineering and in vitro models
5
作者 J.Miguel Oliveira Rui L.Reis 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期237-239,共3页
The latest advances in the field of biomaterials have opened new avenues for scientific breakthroughs in tissue engineer-ing which greatly contributed for the successful translation of tissue engineering products into... The latest advances in the field of biomaterials have opened new avenues for scientific breakthroughs in tissue engineer-ing which greatly contributed for the successful translation of tissue engineering products into the market/clinics.Bio-materials are easily processed to become similar to natural extracellular matrix,making them ideal temporary supports for mimicking the three-dimensional(3D)microenvironment required for maintaining the adequate cell/tissue functions both in vitro and in vivo^([1]). 展开更多
关键词 BREAKTHROUGH biomaterials ENGINEER
下载PDF
Mechanobiomaterials:Mechanics-Guided Design of Epicardial Patch for Treating
6
作者 Huajian Gao 《医用生物力学》 CAS CSCD 北大核心 2024年第S01期1-1,共1页
In recent years,the field of mechanomaterials has emerged at the interface of mechanics,materials science,biology,medicine and data science,where materials are proactively designed or programmed to achieve targeted fu... In recent years,the field of mechanomaterials has emerged at the interface of mechanics,materials science,biology,medicine and data science,where materials are proactively designed or programmed to achieve targeted functionalities by leveraging the fundamental mechanics principles and force-geometry-property relationships.In the biological context,one may likewise introduce mechanobiomaterials as a field with the following goals:(1)proactive design or programming of materials for precisely mediating biomechanical environment of living systems for tissue repair/restoration;(2)proactive control/programming of living systems themselves by an external field via force-structure-function relationships.Here,we will discuss an example of research in mechanobiomaterials on using mechanics to guide the design of acellular epicardial patches for the treatment of myocardial infarction.This technology aims to employ a biocompatible material patch to help reverse left ventricular remodeling and restore heart function after myocardial infarction by increasing the mechanical integrity of damaged heart tissues.However,its application is currently limited by widely scattered therapeutic efficacy.Here,we develop a biomechanics-based simulation platform that allows us to test,design and optimize the performance of an epicardial patch.We show that the widely scattered therapeutic efficacy of this technology can be attributed to a“pre-strain sensitivity”caused by attaching an elastic patch to a dynamically beating heart.To mitigate this challenge,we introduce a viscoelastic epicardial patch,designed at the so-called‘gel point’of the material,that effectively accommodates the cyclic deformation of the myocardium.This then leads to the fabrication and experimentally validated epicardial patch that outperforms all existing ones in restoring heart function after both acute and subacute myocardial infarction in rats.Our study also demonstrates the potential of employing viscoelastic interfaces for better integration of synthetic materials with biological tissues. 展开更多
关键词 PATCH biomaterials SCATTERED
下载PDF
Magnesium-based biomaterials for coordinated tissue repair:A comprehensive overview of design strategies,advantages,and challenges
7
作者 Yuan Chen Siming Zhang +8 位作者 Jiaxiang Bai Yao Yang Yingjie Wang Yanling Zhou Wei Jiang Junjie Wang Junchen Zhu Chen Zhu Xianzuo Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3025-3061,共37页
Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,adva... Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,advantages,and challenges of MBMs for biomedical applications,especially for tissue repair and regeneration.The history of the use of MBMs from the beginning of the 20th century is traced,and the transformative advances in contemporary applications of MBMs in areas such as orthopedics and cardiovascular surgery are emphasized.The review also provides insight into the signaling pathways affected by MBMs,such as the PI3K/Akt and RANKL/RANK/OPG pathways,which are critical for osteogenesis and angiogenesis.The review advocates that future research should focus on optimizing alloy compositions,surface modification and exploring innovative technologies such as 3D printing to improve the efficacy of MBMs in complex tissue repair.The potential of MBMs to tissue engineering and regenerative medicine is significant,urging further exploration and interdisciplinary collaboration to maximize their therapeutic effects. 展开更多
关键词 Magnesium-based biomaterials Design strategies Functional properties Clinical applications CHALLENGES
下载PDF
Modulating immune responses for enhanced cell therapies:The dual role of multi-scale biomaterials
8
作者 Jia'nan Zeng Yuhong Jin +5 位作者 Yanxiao Ao Wenjing Li Kaini Liang Haoke Chen Yi Long Yanan Du 《EngMedicine》 2024年第3期30-45,共16页
The efficacy of cell therapy is compromised by the suboptimal survival and function of transplanted cells,which can be partly attributed to uncontrolled immunomodulation.To address this issue,the dual role of biomater... The efficacy of cell therapy is compromised by the suboptimal survival and function of transplanted cells,which can be partly attributed to uncontrolled immunomodulation.To address this issue,the dual role of biomaterials in assisting immune activation and evasion can be used to fine-tune immune responses and improve the efficacy and safety of cell therapy.Herein,we summarize different methods used to engineer therapeutic cells with biomaterials across multiple spatial scales and review how biomaterials assist in immune activation or evasion in cell therapy based on a discussion of the effects of biomaterials on endogenous immune cells.We also discuss the appealing features of biomaterials that polarize immune responses toward type 1 or type 2 immunity.In future studies,the biophysical and biochemical properties of biomaterials could be better leveraged for immunomodulatory purposes to fuel prominent improvements in cell therapy,and the relevant regulatory mechanisms should be investigated in a more systematic and in-depth manner. 展开更多
关键词 Multi-scale biomaterials Immune activation Immune evasion Cell therapy
下载PDF
Biomimetic natural biomaterials for tissue engineering and regenerative medicine:new biosynthesis methods,recent advances,and emerging applications 被引量:5
9
作者 Shuai Liu Jiang-Ming Yu +11 位作者 Yan-Chang Gan Xiao-Zhong Qiu Zhe-Chen Gao Huan Wang Shi-Xuan Chen Yuan Xiong Guo-Hui Liu Si-En Lin Alec McCarthy Johnson V.John Dai-Xu Wei Hong-Hao Hou 《Military Medical Research》 SCIE CAS CSCD 2024年第1期50-79,共30页
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds bas... Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field. 展开更多
关键词 Biomimic SCAFFOLD BIOSYNTHESIS Natural biomaterial Tissue engineering
下载PDF
SYNTHETI C STUDIES ON BLOOD COMPATIBLE BIOMATERIALS Ⅳ. SYNTHESIS, CHARACTERIZATION AND ANTITHROMBOGENICITY OF POLY-[N, N'( p,p-OXYDIPHENYLENE)] PYROMELLI-TIMIDE-POLYDIMETHYLDIPHENYLSILOXANE SEGMENTED COPOLYMER
10
作者 林思聪 赵晓斌 +1 位作者 周采华 屠湘同 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1993年第4期10-16,共7页
A novel class of aromatic polyimide-silicone segmented copolymer was synthesized with α, ω-bis (γ-aminopropyl) polydimethyldiphenylsiloxane (APMPS) as a silicone segment precursor, from which the segmented polyamic... A novel class of aromatic polyimide-silicone segmented copolymer was synthesized with α, ω-bis (γ-aminopropyl) polydimethyldiphenylsiloxane (APMPS) as a silicone segment precursor, from which the segmented polyamic acid-b-silicone intermediate could be prepared simply with DMF as solvent. The segmented copolymer displays microphase separation and exhibits improved antithrombogenicity, which depends mainly upon both the content level and the DP of the silicone segment. Thermal stability and mechanical property of the copolymer are between that of the aromatic polyimide and the silicone, and also relate to both the content level and the DP of the silicone segment. 展开更多
关键词 Anfithrombogenicity Blood compatible biomaterials N onthrombogenic biomaterials Segmented copolymer SILICONE Aromatic polyimide.
下载PDF
Implant biomaterials: A comprehensive review 被引量:19
11
作者 Monika Saini Yashpal Singh +2 位作者 Pooja Arora Vipin Arora Krati Jain 《World Journal of Clinical Cases》 SCIE 2015年第1期52-57,共6页
Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should... Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should be selected to reduce the negative biologic response while maintaining adequate function. Every clinician should always gain a thorough knowledge about thedifferent biomaterials used for the dental implants. This article makes an effort to summarize various dental biomaterials which were used in the past and as well as the latest material used now. 展开更多
关键词 biomaterials ZIRCONIUM Surface ROUGHNESS CERAMIC Corrosion
下载PDF
Role and prospects of regenerative biomaterials in the repair of spinal cord injury 被引量:21
12
作者 Shuo Liu Yuan-Yuan Xie Bin Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1352-1363,共12页
Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials ... Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials can fill cavities, deliver curative drugs, and provide adsorption sites for transplanted or host cells. Some regenerative biomaterials can also inhibit apoptosis, inflammation and glial scar formation, or further promote neurogenesis, axonal growth and angiogenesis. This review summarized a variety of biomaterial scaffolds made of natural, synthetic, and combined materials applied to spinal cord injury repair. Although these biomaterial scaffolds have shown a certain therapeutic effect in spinal cord injury repair, there are still many problems to be resolved, such as product standards and material safety and effectiveness. 展开更多
关键词 nerve REGENERATION spinal CORD injury REGENERATIVE biomaterials scaffolds tissue engineering REGENERATION transplantation combination functional recovery REPAIR strategy MICROENVIRONMENT neural REGENERATION
下载PDF
Fracture Toughness Properties of Three Different Biomaterials Measured by Nanoindentation 被引量:5
13
作者 Ji-yu Sun Jin Tong 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第1期11-17,共7页
The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulu... The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulus were measured by using a nanoindenter in this paper. Micro/nanoscale cracks were generated by nanoindentation using a Berkovich tip. Nanoindentation of nacre and bovine hoof wall resulted in pile-up around the indent. It was found that the fracture toughness (Kc) of bovine hoof wall is the maximum, the second is nacre, and the elytra cuticle of dung beetle is the least one. 展开更多
关键词 biomimetics BIONICS biomaterials NANOINDENTATION laminated structure fracture toughness
下载PDF
MOLECULAR ENGINEERING STUDIES ON NONTHROMBOGENIC BIOMATERIALS——A NOVEL CLASS OF NONTHROMBOGENIC BIOMATERIALS WITH ZWITTERIONIC STRUCTURE OF CARBOXYBETAINES 被引量:2
14
作者 JunZhou Yong-zhiQiu Xiao-pengZang Chang-wangPan QiangChen JianShen Si-congLin 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第1期93-102,共10页
N,N-dimethyl-N-methacryloyloxyethyl-N-carboxyethyl ammonium(DMMCA)was graft-copolymerized onto thesurface of segmented poly(ether urethane)(SPEU)and PE film.The carboxybetaine structure on SPEU and PE filmsurfaces was... N,N-dimethyl-N-methacryloyloxyethyl-N-carboxyethyl ammonium(DMMCA)was graft-copolymerized onto thesurface of segmented poly(ether urethane)(SPEU)and PE film.The carboxybetaine structure on SPEU and PE filmsurfaces was confirmed by ATR-FTIR,XPS and water contact angle measurements.Through the experiments with plateletadhesion and protein adhesion assay in vitro,the two materials studied,including poly-DMMCA gel,all show excellentnonthrombogenicity.This confirms once again that the zwitterionic molecular structure on the surfaces of materials isessential for improving their nonthrombogenicity and biocompatibility. 展开更多
关键词 Nonthrombogenic biomaterials Zwitterionic biomaterial Carboxybetaine structure Surface graftcopolymerization.
下载PDF
Review of magnesium-based biomaterials and their applications 被引量:47
15
作者 Nurettin Sezer Zafer Evis +2 位作者 Said Murat Kayhan Aydin Tahmasebifar Muammer Koça 《Journal of Magnesium and Alloys》 SCIE EI CAS 2018年第1期23-43,共21页
In biomedical applications,the conventionally used metallic materials,including stainless steel,Co-based alloys and Ti alloys,often times exhibit unsatisfactory results such as stress shielding and metal ion releases.... In biomedical applications,the conventionally used metallic materials,including stainless steel,Co-based alloys and Ti alloys,often times exhibit unsatisfactory results such as stress shielding and metal ion releases.Secondary surgical operation(s)usually become inevitable to prevent long term exposure of body with the toxic implant contents.The metallic biomaterials are being revolutionized with the development of biodegradable materials including several metals,alloys,and metallic glasses.As such,the nature of metallic biomaterials are transformed from the bioinert to bioactive and multi-biofunctional(anti-bacterial,anti-proliferation,anti-cancer,etc.).Magnesium-based biomaterials are candidates to be used as new generation biodegradable metals.Magnesium(Mg)can dissolve in body fluid that means the implanted Mg can degrade during healing process,and if the degradation is controlled it would leave no debris after the completion of healing.Hence,the need for secondary surgical operation(s)for the implant removal could be eliminated.Besides its biocompatibility,the inherent mechanical properties of Mg are very similar to those of human bone.Researchers have been working on synthesis and characterization of Mg-based biomaterials with a variety of composition in order to control the degradation rate of Mg since uncontrolled degradation could result in loss of mechanical integrity,metal contamination in the body and intolerable hydrogen evolution by tissue.It was observed that the applied methods of synthesis and the choice of components affect the characteristics and performance of the Mg-based biomaterials.Researchers have synthesized many Mg-based materials through several synthesis routes and investigated their mechanical properties,biocompatibility and degradation behavior through in vitro,in vivo and in silico studies.This paper is a comprehensive review that compiles,analyses and critically discusses the recent literature on the important aspects of Mg-based biomaterials. 展开更多
关键词 Mg-based biomaterials Mechanical properties IMPLANT Biomedical applications BIODEGRADATION
下载PDF
Review of a new bone tumor therapy strategy based on bifunctional biomaterials 被引量:11
16
作者 Jinfeng Liao Ruxia Han +1 位作者 Yongzhi Wu Zhiyong Qian 《Bone Research》 SCIE CAS CSCD 2021年第2期153-165,共13页
Bone tumors,especially those in osteosarcoma,usually occur in adolescents.The standard clinical treatment includes chemotherapy,surgical therapy,and radiation therapy.Unfortunately,surgical resection often fails to co... Bone tumors,especially those in osteosarcoma,usually occur in adolescents.The standard clinical treatment includes chemotherapy,surgical therapy,and radiation therapy.Unfortunately,surgical resection often fails to completely remove the tumor,which is the main cause of postoperative recurrence and metastasis,resulting in a high mortality rate.Moreover,bone tumors often invade large areas of bone,which cannot repair itself,and causes a serious effect on the quality of life of patients.Thus,bone tumor therapy and bone regeneration are challenging in the clinic.Herein,this review presents the recent developments in bifunctional biomaterials to achieve a new strategy for bone tumor therapy.The selected bifunctional materials include 3D-printed scaffolds,nano/microparticle-containing scaffolds,hydrogels,and bone-targeting nanomaterials.Numerous related studies on bifunctional biomaterials combining tumor photothermal therapy with enhanced bone regeneration were reviewed.Finally,a perspective on the future development of biomaterials for tumor therapy and bone tissue engineering is discussed.This review will provide a useful reference for bone tumor-related disease and the field of complex diseases to combine tumor therapy and tissue engineering. 展开更多
关键词 biomaterials CHEMOTHERAPY MORTALITY
下载PDF
Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration 被引量:14
17
作者 Hongpu Wei Jinjie Cui +2 位作者 Kaili Lin Jing Xie Xudong Wang 《Bone Research》 SCIE CAS CSCD 2022年第1期46-64,共19页
Bone defects combined with tumors, infections, or other bone diseases are challenging in clinical practice. Autologous and allogeneic grafts are two main traditional remedies, but they can cause a series of complicati... Bone defects combined with tumors, infections, or other bone diseases are challenging in clinical practice. Autologous and allogeneic grafts are two main traditional remedies, but they can cause a series of complications. To address this problem,researchers have constructed various implantable biomaterials. However, the original pathological microenvironment of bone defects, such as residual tumors, severe infection, or other bone diseases, could further affect bone regeneration. Thus, the rational design of versatile biomaterials with integrated bone therapy and regeneration functions is in great demand. Many strategies have been applied to fabricate smart stimuli-responsive materials for bone therapy and regeneration, with stimuli related to external physical triggers or endogenous disease microenvironments or involving multiple integrated strategies. Typical external physical triggers include light irradiation, electric and magnetic fields, ultrasound, and mechanical stimuli. These stimuli can transform the internal atomic packing arrangements of materials and affect cell fate, thus enhancing bone tissue therapy and regeneration. In addition to the external stimuli-responsive strategy, some specific pathological microenvironments, such as excess reactive oxygen species and mild acidity in tumors, specific p H reduction and enzymes secreted by bacteria in severe infection, and electronegative potential in bone defect sites, could be used as biochemical triggers to activate bone disease therapy and bone regeneration.Herein, we summarize and discuss the rational construction of versatile biomaterials with bone therapeutic and regenerative functions. The specific mechanisms, clinical applications, and existing limitations of the newly designed biomaterials are also clarified. 展开更多
关键词 biomaterials SMART RATIONAL
下载PDF
SYNTHETIC STUDIES ON BLOOD COMPATIBLE BIOMATERIALSⅡ. SYNTHESIS OF POLY(ETHYLENEGLYCOL MONOMETHYLLTHER ) METHACRYLATE AND ANTITHROMBOGENICITY OF ITS COPOLYMERS 被引量:6
18
作者 林思聪 王锦 +2 位作者 刘晓宁 屠湘同 Charles L. Liotta 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1992年第2期119-126,共8页
Poly (ethyleneglycol monomethylether) methacrylate (PEGMM)was synthesized by means of the reaction of methacrylyl chloride with sodium monomethylpolyethyleneglycoxide and was characterized by FTIR,;H-NMR,and ultra... Poly (ethyleneglycol monomethylether) methacrylate (PEGMM)was synthesized by means of the reaction of methacrylyl chloride with sodium monomethylpolyethyleneglycoxide and was characterized by FTIR,;H-NMR,and ultraviolet spectrometries. A series of poly (vinyl alcohol)-graft-PEGMM (PVA-g-PEGMM )and methyl methacrylate-PEGMM copolymer (PMMA-PEGMM) were prepared and tested for antithrombogenicity in vitro. The results indicate that the antithrombogenicity of the copolymers basically increases with the increasing of the DP of polyoxyethylene (POE) chain and tends to a plateau after the DP around 114,i.e. the long chain structure of POE is favourable to the antithrombogenicityof its copolymers ;moreover, the extent of the improvement ofantithrombogenicity also relates to the PEGMM content of the copolymers and the kind of the matrix that the POE chains are located on. These results are consistent with the anticipation of the hypothesis of maintaining proteins normal conformations for blood compatible bioraaterials. 展开更多
关键词 Antithrombogenicity Blood compatible biomaterials macromonomer Poly (vinyl alcohol) Copolymer Poly (ethyleneglycol monomethylether) methacrylate
下载PDF
On the road to smart biomaterials for bone research: definitions, concepts, advances, and outlook 被引量:12
19
作者 Carolina Montoya Yu Du +3 位作者 Anthony L.Gianforcaro Santiago Orrego Maobin Yang Peter I.Lelkes 《Bone Research》 SCIE CAS CSCD 2021年第2期127-142,共16页
The demand for biomaterials that promote the repair,replacement,or restoration of hard and soft tissues continues to grow as the population ages.Traditionally,smart biomaterials have been thought as those that respond... The demand for biomaterials that promote the repair,replacement,or restoration of hard and soft tissues continues to grow as the population ages.Traditionally,smart biomaterials have been thought as those that respond to stimuli.However,the continuous evolution of the field warrants a fresh look at the concept of smartness of biomaterials.This review presents a redefinition of the term“Smart Biomaterial”and discusses recent advances in and applications of smart biomaterials for hard tissue restoration and regeneration.To clarify the use of the term“smart biomaterials”,we propose four degrees of smartness according to the level of interaction of the biomaterials with the bio-environment and the biological/cellular responses they elicit,defining these materials as inert,active,responsive,and autonomous.Then,we present an up-to-date survey of applications of smart biomaterials for hard tissues,based on the materials’responses(external and internal stimuli)and their use as immune-modulatory biomaterials.Finally,we discuss the limitations and obstacles to the translation from basic research(bench)to clinical utilization that is required for the development of clinically relevant applications of these technologies. 展开更多
关键词 biomaterials SMART AUTONOMOUS
下载PDF
Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering 被引量:21
20
作者 Rui Yu Hualei Zhang Baolin Guo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期1-46,共46页
Conductive biomaterials based on conductive polymers,carbon nanomaterials,or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering,owing to the similar conductivit... Conductive biomaterials based on conductive polymers,carbon nanomaterials,or conductive inorganic nanomaterials demonstrate great potential in wound healing and skin tissue engineering,owing to the similar conductivity to human skin,good antioxidant and antibacterial activities,electrically controlled drug delivery,and photothermal effect.However,a review highlights the design and application of conductive biomaterials for wound healing and skin tissue engineering is lacking.In this review,the design and fabrication methods of conductive biomaterials with various structural forms including film,nanofiber,membrane,hydrogel,sponge,foam,and acellular dermal matrix for applications in wound healing and skin tissue engineering and the corresponding mechanism in promoting the healing process were summarized.The approaches that conductive biomaterials realize their great value in healing wounds via three main strategies(electrotherapy,wound dressing,and wound assessment)were reviewed.The application of conductive biomaterials as wound dressing when facing different wounds including acute wound and chronic wound(infected wound and diabetic wound)and for wound monitoring is discussed in detail.The challenges and perspectives in designing and developing multifunctional conductive biomaterials are proposed as well. 展开更多
关键词 Conducting polymers Inorganic nanomaterials biomaterials ELECTROTHERAPY Wound monitoring
下载PDF
上一页 1 2 155 下一页 到第
使用帮助 返回顶部