期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
High plastic Zr–Cu–Fe–Al–Nb bulk metallic glasses for biomedical applications 被引量:1
1
作者 Shu-shen Wang Yun-liang Wang +2 位作者 Yi-dong Wu Tan Wang Xi-dong Hui 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期648-653,共6页
Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties... Four Zr–Cu–Fe–Al-based bulk metallic glasses(BMGs) with Zr contents greater than 65at% and minor additions of Nb were designed and prepared. The glass forming abilities, thermal stabilities, mechanical properties, and corrosion resistance properties of the prepared BMGs were investigated. These BMGs exhibit moderate glass forming abilities along with superior fracture and yield strengths compared to previously reported Zr–Cu–Fe–Al BMGs. Specifically, the addition of Nb into this quaternary system remarkably increases the plastic strain to 27.5%, which is related to the high Poisson's ratio and low Young's and shear moduli. The Nb-bearing BMGs also exhibit a lower corrosion current density by about one order of magnitude and a wider passive region than 316 L steel in phosphate buffer solution(PBS, pH 7.4). The combination of the optimized composition with high deformation ability, low Young's modulus, and excellent corrosion resistance properties indicates that this kind of BMG is promising for biomedical applications. 展开更多
关键词 metallic glasses biomedical materials mechanical properties corrosion resistance zirconium content niobium addition
下载PDF
Research perspective and prospective of additive manufacturing of biodegradable magnesium-based materials 被引量:2
2
作者 Qingyun Fu Wenqi Liang +6 位作者 Jiaxin Huang Weihong Jin Baisong Guo Ping Li Shulan Xu Paul K.Chu Zhentao Yu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1485-1504,共20页
Biodegradable metals such as magnesium(Mg)and its alloys have attracted extensive attention in biomedical research due to their excellent mechanical properties and biodegradability.However,traditional casting,extrusio... Biodegradable metals such as magnesium(Mg)and its alloys have attracted extensive attention in biomedical research due to their excellent mechanical properties and biodegradability.However,traditional casting,extrusion,and commercial processing have limitations in manufacturing components with a complex shape/structure,and these processes may produce defects such as cavities and gas pores which can degrade the properties and usefulness of the products.Compared to conventional techniques,additive manufacturing(AM)can be used to precisely control the geometry of workpieces made of different Mg-based materials with multiple geometric scales and produce desirable medical products for orthopedics,dentistry,and other fields.However,a detailed and thorough understanding of the raw materials,manufacturing processes,properties,and applications is required to foster the production of commercial Mg-based biomedical components by AM.This review summarizes recent advances and important issues pertaining to AM of Mg-based biomedical products and discusses future development and application trends. 展开更多
关键词 Magnesium-based materials Additive manufacturing Wires and powders biomedical metallic materials Medical devices
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部