期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Hierarcially biomimetic bone materials:from nanometer to millimeter
1
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第3期108-,共1页
关键词 bone Hierarcially biomimetic bone materials
下载PDF
CT assisted biomimetic artificial bone des
2
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第3期122-123,共2页
关键词 bone CT assisted biomimetic artificial bone des
下载PDF
Si-doping bone composite based on protein template- mediated assembly for enhancing bone regeneration 被引量:3
3
作者 Qin YANG Yingying DU +4 位作者 Yifan WANG Zhiying WANG Jun MA Jianglin WANG Shengmin ZHANG 《Frontiers of Materials Science》 SCIE CSCD 2017年第2期106-119,共14页
Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synth... Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future. 展开更多
关键词 silicate-doped molecular assembly biomimetic bone bone regeneration osteoblastic differentiation
原文传递
Artificial periosteum in bone defect repair--A review 被引量:7
4
作者 Quan Wang Jianxiang Xu +4 位作者 Haiming Jin Wenhao Zheng Xiaolei Zhang Yixing Huang Zhiyong Qian 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第9期1801-1807,共7页
Periosteum is a thin membrane that encases the surfaces of most bones.It is composed of an outer fibrous layer contains longitudinally oriented cells and collagen fibers and an inner cambial layer that consists of mul... Periosteum is a thin membrane that encases the surfaces of most bones.It is composed of an outer fibrous layer contains longitudinally oriented cells and collagen fibers and an inner cambial layer that consists of multipotent mesenchymal stem cells(MSCs)and osteogenic progenitor cells.Periosteum has a function of regulating cell and collagen arrangement,which is important to the integrity,modelling and remodelling of bone,particularly during bone defect repair.Apart from autograft and allograft,artificial periosteum,or tissue-engineered periosteum mimicking native periosteum in structure or function,made up of small intestinal submucosa,acellular dermis,induced membrane,cell sheets,and polymeric scaffolds,and so on,has been developed to be used in bone defect repair.In this review,we classify the artificial periosteum into three approaches based on the material source,that is,native tissues,scaffoldfree cell sheets and scaffold-cell composites.Mechanisms,methods and efficacy of each approach are provided.Existing obstacles and enabling technologies for future directions are also discussed. 展开更多
关键词 Artificial periosteum bone defect Tissue engineering Extracellular matrix biomimetic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部