Wall-climbing robots can work on steep terrain and obtain environment information in three dimensions for human in real time,which can improve operation efficiency.However,traditional single-mode robots cannot ensure ...Wall-climbing robots can work on steep terrain and obtain environment information in three dimensions for human in real time,which can improve operation efficiency.However,traditional single-mode robots cannot ensure the stable attachment on complex wall surfaces.Inspired by the structure characteristics of flies and clingfishes,three bionic structures including the flexible spine wheel,the adhesive material and the adsorption system are proposed.Aiming at task requirements on multiple walls and based on the above three bionic structures,a wall-climbing robot with the composed mode of“grabbing+adhesion+adsorption”is presented v/a the law of mechanism configuration synthesis.Using static analysis,the safe attachment conditions for the robot on smooth and rough walls are that the adsorption force is 30 N or more.Based on Newton's Euler and Lagrange formulas,the dynamic equations of the robot on vertical walls are established to deduce that the maximum theoretical torque of the driving motor is 1.43 N·m at a uniform speed.Finally,the prototype of the wall-climbing robot is manufactured and tested on the vertical lime wall,coarse sandpaper wall and acrylic ceiling wall.Meanwhile,experiment results imply that the average maximum moving speed and the corresponding load are 7.19 cm·s-1 and 0.8 kg on the vertical lime wall,7.78 cm·s-1 and 0.6 kg on the coarse sandpaper wall,and 5.93 cm·s-1 and 0.2 kg on the acrylic ceiling wall respectively.These findings could provide practical reference for the robot’s application on walls.展开更多
The excellent climbing performance of the gecko is inspiring engineers and researchers for the design of artificial systems aimed at moving on vertical surfaces. Climbing robots could perform many useful tasks such as...The excellent climbing performance of the gecko is inspiring engineers and researchers for the design of artificial systems aimed at moving on vertical surfaces. Climbing robots could perform many useful tasks such as surveillance, inspection, repair, cleaning, and exploration. This paper presents and discusses the design, fabrication, and evaluation of two climbing robots which mimic the gait of the gecko. The first robot is designed considering macro-scale operations on Earth and in space. The second robot, whose motion is controlled using shape memory alloy actuators, is designed to be easily scaled down for micro-scale applications. Proposed bionic systems can climb up 65 degree slopes at a speed of 20 mm·s^-1.展开更多
Locomotion ability, efficiency and reliability are key targets for a good robot. The linkage mechanism for robot locomotion is a discontinuous-constraint metamorphic mechanism. Here we set up equations to present the ...Locomotion ability, efficiency and reliability are key targets for a good robot. The linkage mechanism for robot locomotion is a discontinuous-constraint metamorphic mechanism. Here we set up equations to present the discontinuous-constraint, point out that driving and controlling are the key points to improve the performance and efficiency of the linkage mechanism. Inspired by controlling strategy of the motor nervous system in peripheral vertebrae to the locomotion, we draw off motor control and drive strategy.展开更多
This paper addresses the design of a biomimetic fish robot actuated by piezoeeramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a l...This paper addresses the design of a biomimetic fish robot actuated by piezoeeramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a lightweight piezocomposite actuator was amplified and transformed into a large tail beat motion by means of a linkage system. Caudal fins that mimic the shape of a mackerel fin were fabricated for the purpose of examining the effect of caudal fm characteristics on thrust production at an operating frequency range. The thickness distribution of a real mackerel's fin was measured and used to design artificial caudal fins. The thrust performance of the biomimetic fish robot propelled by fins of various thicknesses was examined in terms of the Strouhal number, the Froude number, the Reynolds number, and the power consumption. For the same fm area and aspect ratio, an artificial caudal fin with a distributed thickness shows the best forward speed and the least power consumption.展开更多
Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comp...Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comprehensive performance. So far, effective theoretical model is still lacked to solve the problems. The concept of SWCR's adsorption performance is presented, and the techniques of improving utilization rate of given adsorption force and utilization rate of power are studied respectively to improve SWCR's adsorption performance. The effect of locomotion mechanism selection and seal's pressure allocation upon utilization rate of given adsorption force is discussed, and the theoretical way for relevant parameters optimization are provided. The directions for improving utilization rate of power are pointed out based on the detail analysis results of suction system's thermodynamics and hydrodynamics. On this condition, a design method for SWCR-specific impeller is presented, which shows how the impeller's key parameters impact its aerodynamic performance with the aid of computational fluid dynamics (CFD) simulations. The robot prototype, BIT Climber, is developed, and its functions such as mobility, adaptability on wall surface, payload, obstacle ability and wall surface inspection are tested. Through the experiments for the adhesion performance of the robot adsorption system on the normal wall surface, at the impeller's rated rotating speed, the total adsorption force can reach 237.2 N, the average effective negative pressure is 3.02 kPa and the design error is 3.8% only, which indicates a high efficiency. Furthermore, it is found that the robot suction system's static pressure efficiency reaches 84% and utilization rate of adsorption force 81% by the experiment. This thermodynamics model and SWCR-specific impeller design method can effectively improve SWCR's adsorption performance and expand this robot applicability on the various walls. A sliding wall-climbing robot with high adhesion efficiency is developed, and this robot has the features of light body in weight, small size in structure and good capability in payload.展开更多
A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It h...A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It has many characteristics of low-cost,lightweight,simple structure and good flexibility. Its operating principle was introduced. Then three basic locomotion modes,which are linear motion,curvilinear motion and crossing the orthogonal planes,were presented. The safety conditions of WALKMAN-I were discussed and built. Finally,the control system was designed and experiments were carried out. Experimental results show that WALKMAN-I is able to climb on the vertical wall surface along a straight line or a curved path,and has the ability of crossing orthogonal planes and obstacles. The maximum rotation angle reaches 90°,the maximum velocity reaches 5 mm/s,and the rotation angle and the moving velocity of WALKMAN-I can be easily controlled.展开更多
This paper concerns with 3-D locomotion control methods for a biomimetic robot fish. The system architecture of the fish is firstly presented based on a physical model of carangiform fish. The robot fish has a flexibl...This paper concerns with 3-D locomotion control methods for a biomimetic robot fish. The system architecture of the fish is firstly presented based on a physical model of carangiform fish. The robot fish has a flexible body, a rigid caudal fin and a pair of pectoral fins, driven by several servomotors. The motion control of the robot fish are then divided into speed control, orientation control, submerge control and transient motion control, corresponding algorithms are detailed respectively. Finally, experiments and analyses on a 4-link, radio-controlled robot fish prototype with 3-D locomotion show its good performance.展开更多
Existing biomimetic robots can perform some basic rat-like movement primitives(MPs)and simple behavior with stiff combinations of these MPs.To mimic typical rat behavior with high similarity,we propose parameterizing ...Existing biomimetic robots can perform some basic rat-like movement primitives(MPs)and simple behavior with stiff combinations of these MPs.To mimic typical rat behavior with high similarity,we propose parameterizing the behavior using a probabilistic model and movement characteristics.First,an analysis of fifteen 10 min video sequences revealed that an actual rat has six typical behaviors in the open field,and each kind of behavior contains different bio-inspired combinations of eight MPs.We used the softmax classifier to obtain the behavior-movement hierarchical probability model.Secondly,we specified the MPs using movement parameters that are static and dynamic.We obtained the predominant values of the static and dynamic movement parameters using hierarchical clustering and fuzzy C-means clustering,respectively.These predominant parameters were used for fitting the rat spinal joint trajectory using a second-order Fourier series,and the joint trajectory was generalized using a back propagation neural network with two hidden layers.Finally,the hierarchical probability model and the generalized joint trajectory were mapped to the robot as control policy and commands,respectively.We implemented the six typical behaviors on the robot,and the results show high similarity when compared with the behaviors of actual rats.展开更多
A mechanical design method of mbet fish is introduced in this paper. Based on this method, an autonomous 3-Dimension (3D) locomotion mbet fish with two pectoral fins and a caudal fin is developed. The pectoral fin m...A mechanical design method of mbet fish is introduced in this paper. Based on this method, an autonomous 3-Dimension (3D) locomotion mbet fish with two pectoral fins and a caudal fin is developed. The pectoral fin mechanism has 3 degrees of freedom (3-DOFs), which enables the mbet fish to realize yawing and pitching motions by controlling two pectoral fins. And the eandal fin mechanism is designed based on fish body wave curve fitting. The forward velocity can be adjusted by changing the eandal mechanism' s oscillating frequency. Finally a physical implementation of the robot fish and experimental results are given.展开更多
A practical motion control strategy for a radio-controlled, 4-link and free-swimmingbiomimetic robot fish is presented. Based on control performance of the fish the fish s motion controltask is decomposed into on-line...A practical motion control strategy for a radio-controlled, 4-link and free-swimmingbiomimetic robot fish is presented. Based on control performance of the fish the fish s motion controltask is decomposed into on-line speed control and orientation control. The speed control algorithm isimplemented by using piecewise control, and orientation control is realized by fuzzy logic. Combiningwith step control and fuzzy control, a point-to-point (PTP) control algorithm is proposed and appliedto the closed-loop experimental system that uses a vision-based position sensing subsystem to providefeedback. Experiments confirm the reliability and e?ectiveness of the presented algorithms.展开更多
To provide hexapod robots with strategies of locomotion planning, observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis. Through digitali...To provide hexapod robots with strategies of locomotion planning, observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis. Through digitalization of original analog video, locomotion characters of ants were obtained, the biomimetic foundation was laid for polynomial trajectory planning of multi-legged robots, which was deduced with mathematics method. In addition, five rules were concluded, which apply to hexapod robots marching locomotion planning. The first one is the fundamental strategy of multi-legged robots' leg trajectory planning. The second one helps to enhance the static and dynamic stability of multi-legged robots. The third one can improve the validity and feasibility of legs' falling points. The last two give criterions of multi-legged robots' toe trajectory figures and practical recommendatory constraints. These five rules give a good method for marching locomotion planning of multi-legged robots, and can be expended to turning planning and any other special locomotion.展开更多
In conection with the complex working-surroundings of the wall-climbing Robot, this paper researched akind of alternatively moving mechanism with good obstacle-surmounting ability and high moving speed, making use oft...In conection with the complex working-surroundings of the wall-climbing Robot, this paper researched akind of alternatively moving mechanism with good obstacle-surmounting ability and high moving speed, making use ofthe thought of bionics. This paper designed a kind of self-adjusting multi-vacuum sucker. Furthermore, it employedthe theory of vacuum system to establish the work mathematics madel of control switch to are sucking disc and presented the design parameter of the control switch. In addition, this paper made use of the thought of bionics to design aobstacle-surmounting mechanism used in wall-climbing robot. Also it employed the theory Of robotics to analyze the kinematics and the dynamics movement of die robot.展开更多
A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models ...A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models are derived by kinematics analysis. Moreover, the logic relations of the system states are known in advance. First, a fault tree is used to analyze the system by evaluating the basic events (elementary causes), which can lead to a root event (a particular fault). Then, a multiple-model adaptive estimation algorithm is used to detect and identify the model-known faults. Finally, based on the system states of the robot and the results of the estimation, the model-unknown faults are also identified using logical reasoning. Experiments show that the proposed approach based on the combination of logical reasoning and model estimating is efficient in the FDI of the robot.展开更多
A wall-climbing robot that can continuously work on many types of wall surfaces has been developed. This robot based on low-vacuum adsorption principle consists of a locomotion mecha- nism, a sealing device, a fluid m...A wall-climbing robot that can continuously work on many types of wall surfaces has been developed. This robot based on low-vacuum adsorption principle consists of a locomotion mecha- nism, a sealing device, a fluid machine and a detecting system. The adsorption force is analyzed in details and its influencing factors are given. The robot prototype, which has the features of high ad- hesion efficiency, light body in weight, small size in structure and good capability in payload, is test- ed in outdoor and indoor environments. Through the experiments, the influences of the impeller slit and the seal clearance are discussed. In addition, the robot functions such as adsorption perform- ance, locomotion performance and wall adaptability are tested by experiments. The experiments have verified that the robot not only can climb on many types of wall surfaces, but also has outstand- ing locomotion ability and payload capacity.展开更多
Transit gait programming is a key problem for a multi-legged robot to climb automatically from the ground up the wall, as well as between wall intersections. In this paper, a new idea is put forward by which the compl...Transit gait programming is a key problem for a multi-legged robot to climb automatically from the ground up the wall, as well as between wall intersections. In this paper, a new idea is put forward by which the complex transit gait is decomposed into a sequence of two relatively simpler parts - single-leg motion and body pitching motion. An algorithm based on the above concept shows its feasibility and effectiveness in the graphic kinematics simulation.展开更多
While much attention has been given to bio-robotics in recent years, not much of this has been given to the challenging subject of locomotion in slippery conditions. This study begins to rectify this by proposing a bi...While much attention has been given to bio-robotics in recent years, not much of this has been given to the challenging subject of locomotion in slippery conditions. This study begins to rectify this by proposing a biomimetic approach to generating the friction required to give sufficient propulsive force on a slippery substrate. We took inspiration from a successful biological solution-that of applying hair-like structures to the propulsive appendages, similar to the setae found in nereid polychaetes living in muddy habitats. We began by examining the morphology and the mean locomotion parameters of one of the most common nereids.. Nereis diversicolor. Following this study, we designed and fabricated a robotic system with appendages imitating the biological shape found in the worm. A flexible control system was developed to allow most of the locomotion parameters observed in the real worm to be applied to the robot. Experiments on three different natural substrates ranging from fine sand to gravel showed that, whereas a plate attached to the appendage generated most thrust on a small particle substrate, a bundle of artificial setae attached to the appendage generated most thrust on a large particle substrate. On all types of substrate tested, an appendage without any attachment did significantly worse than one with. This suggests that hair-like structures can be advantageous.展开更多
Using three-dimensional computer simulations, we probe biomimetic free swimming of an internally actuated flexible plate in the regime near the first natural frequency. The plate is driven by an oscillating internal m...Using three-dimensional computer simulations, we probe biomimetic free swimming of an internally actuated flexible plate in the regime near the first natural frequency. The plate is driven by an oscillating internal moment approximating the actuation mechanism of a piezoelectric macro fiber composite (MFC) bimorph. We show in our simulations that the addition of a passive attachment increases both swimming velocity and efficiency. Specifically, if the active and passive sections are of similar size, the overall performance is the best. We determine that this optimum is a result of two competing factors. If the passive section is too large, then the actuated portion is unable to generate substantial deflection to create sufficient thrust. On the other hand, a large actuated section leads to a bending pattern that is inefficient at generating thrust especially at higher frequencies.展开更多
The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism,while the problem concerning high carrying capacity has not yet be solved for the existing shoul...The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism,while the problem concerning high carrying capacity has not yet be solved for the existing shoulder complex.A new type biomimetic shoulder complex,which adopts 3-PSS/S(P for prismatic pair,S for spherical pair) spherical parallel mechanism(SPM),is proposed.The static equilibrium equations of each component are established by using the vector method and the equations for constrain forces with certain load are solved.Then the constrain force on the middle limb and that on the side limbs are compared in order to verify the unloading performance of the mechanism.In addition,the prototype mechanism of the shoulder complex is developed,and the force feedback experiment is conducted to verify the static analysis,which indicates that the middle limb suffers most of the external force and the effect of mechanics unloading is achieved.The 3-PSS/S spherical parallel mechanism is presented for the shoulder complex,and the realization of mechanics unloading is benefit for the improvement of the carrying capacity of the shoulder complex.展开更多
In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-lo...In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.展开更多
In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors,this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot insp...In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors,this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot inspired by the inchworm’s movement.The robot utilizes vacuum adsorption for vertical wall attachment and legged movement for locomotion.To enhance the robot’s movement efficiency and reduce wear on the adsorption device,a gait mimicking an inchworm’s movement is planned,and foot trajectory planning is performed using a quintic polynomial function.Under velocity constraints,foot trajectory optimization is achieved using an improved Particle Swarm Optimization(PSO)algorithm,determining the quintic polynomial function with the best fitness through simulation.Finally,through comparative experiments,the climbing time of the robot closely matches the simulation results,validating the trajectory planning method’s accuracy.展开更多
基金This work was supported by grants from Science and Technology Major Project of Anhui Province(17030901034)Jiangsu Key Research and Development Plan(BE2017067).
文摘Wall-climbing robots can work on steep terrain and obtain environment information in three dimensions for human in real time,which can improve operation efficiency.However,traditional single-mode robots cannot ensure the stable attachment on complex wall surfaces.Inspired by the structure characteristics of flies and clingfishes,three bionic structures including the flexible spine wheel,the adhesive material and the adsorption system are proposed.Aiming at task requirements on multiple walls and based on the above three bionic structures,a wall-climbing robot with the composed mode of“grabbing+adhesion+adsorption”is presented v/a the law of mechanism configuration synthesis.Using static analysis,the safe attachment conditions for the robot on smooth and rough walls are that the adsorption force is 30 N or more.Based on Newton's Euler and Lagrange formulas,the dynamic equations of the robot on vertical walls are established to deduce that the maximum theoretical torque of the driving motor is 1.43 N·m at a uniform speed.Finally,the prototype of the wall-climbing robot is manufactured and tested on the vertical lime wall,coarse sandpaper wall and acrylic ceiling wall.Meanwhile,experiment results imply that the average maximum moving speed and the corresponding load are 7.19 cm·s-1 and 0.8 kg on the vertical lime wall,7.78 cm·s-1 and 0.6 kg on the coarse sandpaper wall,and 5.93 cm·s-1 and 0.2 kg on the acrylic ceiling wall respectively.These findings could provide practical reference for the robot’s application on walls.
文摘The excellent climbing performance of the gecko is inspiring engineers and researchers for the design of artificial systems aimed at moving on vertical surfaces. Climbing robots could perform many useful tasks such as surveillance, inspection, repair, cleaning, and exploration. This paper presents and discusses the design, fabrication, and evaluation of two climbing robots which mimic the gait of the gecko. The first robot is designed considering macro-scale operations on Earth and in space. The second robot, whose motion is controlled using shape memory alloy actuators, is designed to be easily scaled down for micro-scale applications. Proposed bionic systems can climb up 65 degree slopes at a speed of 20 mm·s^-1.
基金National Natural Science Foundation of China under No. 60535020 , 50575102.
文摘Locomotion ability, efficiency and reliability are key targets for a good robot. The linkage mechanism for robot locomotion is a discontinuous-constraint metamorphic mechanism. Here we set up equations to present the discontinuous-constraint, point out that driving and controlling are the key points to improve the performance and efficiency of the linkage mechanism. Inspired by controlling strategy of the motor nervous system in peripheral vertebrae to the locomotion, we draw off motor control and drive strategy.
文摘This paper addresses the design of a biomimetic fish robot actuated by piezoeeramic actuators and the effect of artificial caudal fins on the fish robot's performance. The limited bending displacement produced by a lightweight piezocomposite actuator was amplified and transformed into a large tail beat motion by means of a linkage system. Caudal fins that mimic the shape of a mackerel fin were fabricated for the purpose of examining the effect of caudal fm characteristics on thrust production at an operating frequency range. The thickness distribution of a real mackerel's fin was measured and used to design artificial caudal fins. The thrust performance of the biomimetic fish robot propelled by fins of various thicknesses was examined in terms of the Strouhal number, the Froude number, the Reynolds number, and the power consumption. For the same fm area and aspect ratio, an artificial caudal fin with a distributed thickness shows the best forward speed and the least power consumption.
基金supported by Ministry of Housing and Urban-Rural Development of China (Grant No. 2007-k8-6)National Natural Science of Foundation of China (Grant No. 60975070)
文摘Sliding wall-climbing robot (SWCR) is applied worldwide for its continuous motion, however, considerable air leakage causes two problems: great power consumption and big noise, and they constraint the robot's comprehensive performance. So far, effective theoretical model is still lacked to solve the problems. The concept of SWCR's adsorption performance is presented, and the techniques of improving utilization rate of given adsorption force and utilization rate of power are studied respectively to improve SWCR's adsorption performance. The effect of locomotion mechanism selection and seal's pressure allocation upon utilization rate of given adsorption force is discussed, and the theoretical way for relevant parameters optimization are provided. The directions for improving utilization rate of power are pointed out based on the detail analysis results of suction system's thermodynamics and hydrodynamics. On this condition, a design method for SWCR-specific impeller is presented, which shows how the impeller's key parameters impact its aerodynamic performance with the aid of computational fluid dynamics (CFD) simulations. The robot prototype, BIT Climber, is developed, and its functions such as mobility, adaptability on wall surface, payload, obstacle ability and wall surface inspection are tested. Through the experiments for the adhesion performance of the robot adsorption system on the normal wall surface, at the impeller's rated rotating speed, the total adsorption force can reach 237.2 N, the average effective negative pressure is 3.02 kPa and the design error is 3.8% only, which indicates a high efficiency. Furthermore, it is found that the robot suction system's static pressure efficiency reaches 84% and utilization rate of adsorption force 81% by the experiment. This thermodynamics model and SWCR-specific impeller design method can effectively improve SWCR's adsorption performance and expand this robot applicability on the various walls. A sliding wall-climbing robot with high adhesion efficiency is developed, and this robot has the features of light body in weight, small size in structure and good capability in payload.
基金Project (50575206) supported by the National Natural Science Foundation of ChinaProject (BX102716) supported by Xinmiao Program of Zhejiang Province, China
文摘A new kind of flexible pneumatic wall-climbing robot,named WALKMAN-I,was proposed. WALKMAN-I is basically composed of a flexible pneumatic actuator (FPA),a flexible pneumatic spherical joint and six suction cups. It has many characteristics of low-cost,lightweight,simple structure and good flexibility. Its operating principle was introduced. Then three basic locomotion modes,which are linear motion,curvilinear motion and crossing the orthogonal planes,were presented. The safety conditions of WALKMAN-I were discussed and built. Finally,the control system was designed and experiments were carried out. Experimental results show that WALKMAN-I is able to climb on the vertical wall surface along a straight line or a curved path,and has the ability of crossing orthogonal planes and obstacles. The maximum rotation angle reaches 90°,the maximum velocity reaches 5 mm/s,and the rotation angle and the moving velocity of WALKMAN-I can be easily controlled.
基金This work was supported by National 973 Program (No. 2002CB312200) and National Hi-tech Development Project (No. 2003AA404190)
文摘This paper concerns with 3-D locomotion control methods for a biomimetic robot fish. The system architecture of the fish is firstly presented based on a physical model of carangiform fish. The robot fish has a flexible body, a rigid caudal fin and a pair of pectoral fins, driven by several servomotors. The motion control of the robot fish are then divided into speed control, orientation control, submerge control and transient motion control, corresponding algorithms are detailed respectively. Finally, experiments and analyses on a 4-link, radio-controlled robot fish prototype with 3-D locomotion show its good performance.
基金supported in part by the National Natural Science Foundation of China(62022014)in part by the National Key Research and Development Program of China(2017YFE0117000)。
文摘Existing biomimetic robots can perform some basic rat-like movement primitives(MPs)and simple behavior with stiff combinations of these MPs.To mimic typical rat behavior with high similarity,we propose parameterizing the behavior using a probabilistic model and movement characteristics.First,an analysis of fifteen 10 min video sequences revealed that an actual rat has six typical behaviors in the open field,and each kind of behavior contains different bio-inspired combinations of eight MPs.We used the softmax classifier to obtain the behavior-movement hierarchical probability model.Secondly,we specified the MPs using movement parameters that are static and dynamic.We obtained the predominant values of the static and dynamic movement parameters using hierarchical clustering and fuzzy C-means clustering,respectively.These predominant parameters were used for fitting the rat spinal joint trajectory using a second-order Fourier series,and the joint trajectory was generalized using a back propagation neural network with two hidden layers.Finally,the hierarchical probability model and the generalized joint trajectory were mapped to the robot as control policy and commands,respectively.We implemented the six typical behaviors on the robot,and the results show high similarity when compared with the behaviors of actual rats.
基金Supported by the National Natural Science Foundation of China (No. 50475179) and the National High Technology, Research and Development Program of China (No. 2006AAllz225).
文摘A mechanical design method of mbet fish is introduced in this paper. Based on this method, an autonomous 3-Dimension (3D) locomotion mbet fish with two pectoral fins and a caudal fin is developed. The pectoral fin mechanism has 3 degrees of freedom (3-DOFs), which enables the mbet fish to realize yawing and pitching motions by controlling two pectoral fins. And the eandal fin mechanism is designed based on fish body wave curve fitting. The forward velocity can be adjusted by changing the eandal mechanism' s oscillating frequency. Finally a physical implementation of the robot fish and experimental results are given.
文摘A practical motion control strategy for a radio-controlled, 4-link and free-swimmingbiomimetic robot fish is presented. Based on control performance of the fish the fish s motion controltask is decomposed into on-line speed control and orientation control. The speed control algorithm isimplemented by using piecewise control, and orientation control is realized by fuzzy logic. Combiningwith step control and fuzzy control, a point-to-point (PTP) control algorithm is proposed and appliedto the closed-loop experimental system that uses a vision-based position sensing subsystem to providefeedback. Experiments confirm the reliability and e?ectiveness of the presented algorithms.
基金Sponsored by the Ministerial Level Advanced Research Foundation(65822576)
文摘To provide hexapod robots with strategies of locomotion planning, observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis. Through digitalization of original analog video, locomotion characters of ants were obtained, the biomimetic foundation was laid for polynomial trajectory planning of multi-legged robots, which was deduced with mathematics method. In addition, five rules were concluded, which apply to hexapod robots marching locomotion planning. The first one is the fundamental strategy of multi-legged robots' leg trajectory planning. The second one helps to enhance the static and dynamic stability of multi-legged robots. The third one can improve the validity and feasibility of legs' falling points. The last two give criterions of multi-legged robots' toe trajectory figures and practical recommendatory constraints. These five rules give a good method for marching locomotion planning of multi-legged robots, and can be expended to turning planning and any other special locomotion.
文摘In conection with the complex working-surroundings of the wall-climbing Robot, this paper researched akind of alternatively moving mechanism with good obstacle-surmounting ability and high moving speed, making use ofthe thought of bionics. This paper designed a kind of self-adjusting multi-vacuum sucker. Furthermore, it employedthe theory of vacuum system to establish the work mathematics madel of control switch to are sucking disc and presented the design parameter of the control switch. In addition, this paper made use of the thought of bionics to design aobstacle-surmounting mechanism used in wall-climbing robot. Also it employed the theory Of robotics to analyze the kinematics and the dynamics movement of die robot.
基金supported by the Hi-tech Research and Development Program of China (No.2006AA420203)
文摘A combined logic- and model-based approach to fault detection and identification (FDI) in a suction foot control system of a wall-climbing robot is presented in this paper. For the control system, some fault models are derived by kinematics analysis. Moreover, the logic relations of the system states are known in advance. First, a fault tree is used to analyze the system by evaluating the basic events (elementary causes), which can lead to a root event (a particular fault). Then, a multiple-model adaptive estimation algorithm is used to detect and identify the model-known faults. Finally, based on the system states of the robot and the results of the estimation, the model-unknown faults are also identified using logical reasoning. Experiments show that the proposed approach based on the combination of logical reasoning and model estimating is efficient in the FDI of the robot.
基金Supported by National Natural Science Foundation of China(61273344)Ph.D. Programs Foundation of Ministry of Education of China(20121101110011)State Key Laboratory of Robotics and Systems(HIT)(SKLRS-2011-ZD-06)
文摘A wall-climbing robot that can continuously work on many types of wall surfaces has been developed. This robot based on low-vacuum adsorption principle consists of a locomotion mecha- nism, a sealing device, a fluid machine and a detecting system. The adsorption force is analyzed in details and its influencing factors are given. The robot prototype, which has the features of high ad- hesion efficiency, light body in weight, small size in structure and good capability in payload, is test- ed in outdoor and indoor environments. Through the experiments, the influences of the impeller slit and the seal clearance are discussed. In addition, the robot functions such as adsorption perform- ance, locomotion performance and wall adaptability are tested by experiments. The experiments have verified that the robot not only can climb on many types of wall surfaces, but also has outstand- ing locomotion ability and payload capacity.
文摘Transit gait programming is a key problem for a multi-legged robot to climb automatically from the ground up the wall, as well as between wall intersections. In this paper, a new idea is put forward by which the complex transit gait is decomposed into a sequence of two relatively simpler parts - single-leg motion and body pitching motion. An algorithm based on the above concept shows its feasibility and effectiveness in the graphic kinematics simulation.
文摘While much attention has been given to bio-robotics in recent years, not much of this has been given to the challenging subject of locomotion in slippery conditions. This study begins to rectify this by proposing a biomimetic approach to generating the friction required to give sufficient propulsive force on a slippery substrate. We took inspiration from a successful biological solution-that of applying hair-like structures to the propulsive appendages, similar to the setae found in nereid polychaetes living in muddy habitats. We began by examining the morphology and the mean locomotion parameters of one of the most common nereids.. Nereis diversicolor. Following this study, we designed and fabricated a robotic system with appendages imitating the biological shape found in the worm. A flexible control system was developed to allow most of the locomotion parameters observed in the real worm to be applied to the robot. Experiments on three different natural substrates ranging from fine sand to gravel showed that, whereas a plate attached to the appendage generated most thrust on a small particle substrate, a bundle of artificial setae attached to the appendage generated most thrust on a large particle substrate. On all types of substrate tested, an appendage without any attachment did significantly worse than one with. This suggests that hair-like structures can be advantageous.
文摘Using three-dimensional computer simulations, we probe biomimetic free swimming of an internally actuated flexible plate in the regime near the first natural frequency. The plate is driven by an oscillating internal moment approximating the actuation mechanism of a piezoelectric macro fiber composite (MFC) bimorph. We show in our simulations that the addition of a passive attachment increases both swimming velocity and efficiency. Specifically, if the active and passive sections are of similar size, the overall performance is the best. We determine that this optimum is a result of two competing factors. If the passive section is too large, then the actuated portion is unable to generate substantial deflection to create sufficient thrust. On the other hand, a large actuated section leads to a bending pattern that is inefficient at generating thrust especially at higher frequencies.
基金Supported by National Natural Science Foundation of China(Grant No.51275443)Key Project of Ministry of Education of China(Grant No.212012)+2 种基金Hebei Provincial Natural Science Foundation of China(Grant No.E2012203034)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111333120004)Research Fund for Outstanding Youth in Higher Education Institutions of Hebei Province,China(Grant No.Y2011114)
文摘The structure design for high ratio of carrying capacity to deadweight is one of the challenges for the bionic mechanism,while the problem concerning high carrying capacity has not yet be solved for the existing shoulder complex.A new type biomimetic shoulder complex,which adopts 3-PSS/S(P for prismatic pair,S for spherical pair) spherical parallel mechanism(SPM),is proposed.The static equilibrium equations of each component are established by using the vector method and the equations for constrain forces with certain load are solved.Then the constrain force on the middle limb and that on the side limbs are compared in order to verify the unloading performance of the mechanism.In addition,the prototype mechanism of the shoulder complex is developed,and the force feedback experiment is conducted to verify the static analysis,which indicates that the middle limb suffers most of the external force and the effect of mechanics unloading is achieved.The 3-PSS/S spherical parallel mechanism is presented for the shoulder complex,and the realization of mechanics unloading is benefit for the improvement of the carrying capacity of the shoulder complex.
文摘In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.
基金supported by the Guangxi Science and Technology Base and Talent Project(AD23026115)the Special fund for centrally guided local science and technology development(2023JRZ0103)+1 种基金the Guangxi University of Science and Technology Doctoral Fund(2023KY0353)the Guangxi University of Science and Technology Doctoral Fund(22Z39).
文摘In order to reduce the labor intensity of high-altitude workers and realize the cleaning and maintenance of high-rise building exteriors,this paper proposes a design for a 4-DOF bipedal wall-climbing bionic robot inspired by the inchworm’s movement.The robot utilizes vacuum adsorption for vertical wall attachment and legged movement for locomotion.To enhance the robot’s movement efficiency and reduce wear on the adsorption device,a gait mimicking an inchworm’s movement is planned,and foot trajectory planning is performed using a quintic polynomial function.Under velocity constraints,foot trajectory optimization is achieved using an improved Particle Swarm Optimization(PSO)algorithm,determining the quintic polynomial function with the best fitness through simulation.Finally,through comparative experiments,the climbing time of the robot closely matches the simulation results,validating the trajectory planning method’s accuracy.