期刊文献+
共找到126篇文章
< 1 2 7 >
每页显示 20 50 100
Bioprocess-inspired Actin Biomineralized Hematite Mesocrystals for Energy Storage
1
作者 XU Wei ZHAO Chao +1 位作者 XIE Jingjing WANG Rongjie 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1299-1303,共5页
Biomineralization is a biological process of synthesizing inorganic minerals within organisms.It has been found that intracellular proteins are involved in the room temperature synthesis process of anatase Ti O2in liv... Biomineralization is a biological process of synthesizing inorganic minerals within organisms.It has been found that intracellular proteins are involved in the room temperature synthesis process of anatase Ti O2in living mussels.Here,we used intracellular actin to synthesize hematite by biomineralization.Biomineralized hematite has a nano spindle structure with a particle size of approximately 150 nm.The microstructure indicates that the prepared hematite is a mesocrystals composed of ordered arrangement and assembly of primary nanoparticles.In addition,hematite mesocrystals exhibit good lithium storage performance as electrode materials for lithium batteries.The discharge specific capacity of the battery remained at 560.7 m Ah·g^(-1)after 130 cycles at a current density of 200 m A·g^(-1).This work expands the synthesis methods of hematite by biomineralization,and provides a new strategy for preparing inorganic materials by intracellular proteins. 展开更多
关键词 ACTIN HEMATITE BIOMINERALIZATION MESOCRYSTALS lithium battery
下载PDF
A Study of Chromium Adsorption on Natural Goethite Biomineralized with Iron Bacteria 被引量:3
2
作者 SUN Zhenya ZHU Chunshui +3 位作者 HUANG Jiangbo GONG Wenqi CHEN Hesheng MU Shanbin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第4期597-603,共7页
Goethite, especially biogenic goethite, has high specific surface area and great capacity for the adsorption of many contaminants including metal ions and organic chelates. Chromium is a redox actively toxic metal ion... Goethite, especially biogenic goethite, has high specific surface area and great capacity for the adsorption of many contaminants including metal ions and organic chelates. Chromium is a redox actively toxic metal ion that exists as either Cr^Ⅲ or Cr^Ⅵ in nature, and as such it is essential to understand its behavior of adsorption on natural goethite mineralized by iron bacteria, as Gallionella and Leptothrix in water body. The adsorption of Cr^3+ and Cr^Ⅵ on naturally biomineralized goethite is studied in this paper. The results show that both Langmuir and Freundlich adsorption isothermal models are able to accurately describe the adsorption of these two ions. Investigation of SEM/EDS, TEM/EDS indicates that the two ions do not adsorb homogeneously on goethite owing to the different microstructures of goethite, and that the microspherical goethite has a greater adsorption capacity for chromium ions than the helical one. XPS data show that redox reaction of chromium on the surface of biomineralized goethite takes place in the adsorption of both Cr^3+ and Cr^Ⅵ. The CrvI adsorbed on biogoethite is much easier to transform into CrIII than the oxidization of Cr^Ⅲ on the bio-goethite. 展开更多
关键词 biomineralized goethite ADSORPTION CHROMIUM iron bacteria
下载PDF
Cementomimetics——constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides 被引量:6
3
作者 Mustafa Gungormus Ersin E Oren +7 位作者 Jeremy A Horst Hanson Fong Marketa Hnilova Martha J Somerman Malcolm L Snead Ram Samudrala Candan Tamerler Mehmet Sarikaya 《International Journal of Oral Science》 SCIE CAS CSCD 2012年第2期69-77,共9页
Cementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavio... Cementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavior of the host elicited by an infectious biofilm adhering to the tooth root and left untreated, may lead to tooth loss. We describe a novel protocol for identifying peptide sequences from native proteins with the potential to repair damaged dental tissues by controlling hydroxyapatite biomineralization. Using amelogenin as a case study and a bioinformatics scoring matrix, we identified regions within amelogenin that are shared with a set of hydroxyapatite-binding peptides (HABPs) previously selected by phage display. One 22-amino acid long peptide regions referred to as amelogenin-derived peptide 5 (ADP5) was shown to facilitate cell-free formation of a cementum-like hydroxyapatite mineral layer on demineralized human root dentin that, in turn, supported attachment of periodontal ligament cells in vitro. Our findings have several implications in peptide-assisted mineral formation that mimic biomineralization. By further elaborating the mechanism for protein control over the biomineral formed, we afford new insights into the evolution of protein-mineral interactions. By exploiting small peptide domains of native proteins, our understanding of structure-function relationships of biomineralizing proteins can be extended and these peptides can be utilized to engineer mineral formation. Finally, the cementomimetic layer formed by ADP5 has the potential clinical application to repair diseased root surfaces so as to promote the regeneration of periodontal tissues and thereby reduce the morbiditv associated with tooth loss. 展开更多
关键词 AMELOGENIN amelogenin-derived peptides bioinformatics biomineralization cementomimetics CEMENTUM demineral-ization REMINERALIZATION
下载PDF
Biomineralized nanoparticles for the immobilization and degradation of crude oil-contaminated soil
4
作者 Daoqing Liu Qianwei Li +3 位作者 Enhui Liu Miao Zhang Jicheng Liu Chunmao Chen 《Nano Research》 SCIE EI CSCD 2023年第10期12238-12245,共8页
Accidental oil leaks and spills often cause server soil pollution,and in situ remediation is a powerful and economical treatment technology.While during in situ remediation process,unpredicted migration of petroleum h... Accidental oil leaks and spills often cause server soil pollution,and in situ remediation is a powerful and economical treatment technology.While during in situ remediation process,unpredicted migration of petroleum hydrocarbon in heterogeneous soil will lead to a long-term source of persistent aquifer contamination.To reduce the migration of petroleum hydrocarbon and effectively improve the in situ remediation efficiency,herein,fungal biomineralization strategy was proposed for the immobilization of petroleum contaminants.A ureolytic fungi strain with crude oil-degradation ability was screened and identified as Chaetomium globosum.When incubated in medium containing Ca2+and crude oil,a mineral corona with spiny nanoparticles was formed at the edge of oil and the interface characters were analyzed using fluorescent pH and dissolved oxygen(DO)sensing films,respectively.Results indicated that biominerals preferred to aggregate around the edge of crude oil,providing favorable microenvironment for fungal growth and then leading to the increase of pH in the microenvironment,eventually accompanied by the formation of mineral corona.The mineral corona with numerous nanoparticles may act as a solid and stable shell,limiting or reducing the mobility of crude oil,and providing enough time for fungal biodegradation.After 28 days incubation,oilcontaminated soil treated with fungal biomineralization showed better immobilization ability for total petroleum hydrocarbon(TPH)under simulated acid-rain condition and higher TPH removal efficiency.This is the first demonstration for the immobilization of oil through fungal biomineralized nanoparticles,thus providing a novel strategy for the in situ remediation of oilcontaminated sites. 展开更多
关键词 BIOMINERALIZATION DEGRADATION nanomineral NANOAGGREGATES IMMIGRATION
原文传递
Copper carbonate nanoparticles as an effective biomineralized carrier to load macromolecular drugs for multimodal therapy
5
作者 Liping Dong Jinsong Ding +3 位作者 Lemei Zhu Yujun Liu Xiang Gao Wenhu Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第9期204-209,共6页
Macromolecular drugs have attracted great interest as biotherapy to cure previously untreatable diseases.For clinical translation,biomacromolecules encounter several common druggability difficulties,such as in vivo in... Macromolecular drugs have attracted great interest as biotherapy to cure previously untreatable diseases.For clinical translation,biomacromolecules encounter several common druggability difficulties,such as in vivo instability and poor penetration to cross physiologic barriers,thus requiring sophisticated systems for drug delivery.Inspired by the natural biomineralization via interaction between inorganic ions and biomacromolecules,herein we rationally screened biocompatible transition metals to biomineralize with carbonate for macromolecules loading.Among the metal ions,Cu^(2+)was found to be the best candidate,and its superiority over the widely studied Ca^(2+)minerals was also demonstrated.Capitalized on this finding,copper carbonate nanoparticles were prepared via a simple mixing process to co-load glucose oxidase(GOx)and a HIF-αDNAzyme(DZ),achieving ultra-high loading capacity of 61%.Upon encapsulation into nanoparticles,enzymatic activity of both drugs was passivated to avoid potential side-effects during circulation,while the drugs could be rapidly released within 1 h in response to acidic p H to fully recover their activities.The nanoparticles could accumulate into tumor via intravenous injection,facilitate the cell membrane penetration,and release the payloads of GOx,DZ and Cu^(2+)inside cells to exert a series of anti-tumor effects.GOx caused tumor starvation by catalytic glucose consumption,and the concomitantly generated H_(2)O_(2)byproduct boosted the Cu^(2+)-mediated chemodynamic therapy(CDT).Meanwhile,the DZ silenced HIF-αexpression to sensitize both starvation therapy and CDT.As a result,a synergistic tumor growth inhibition was achieved.This work provides a simple method to prepare biomineralized nanoparticles,and offers a general approach for macromolecular drugs delivery via Cu^(2+)-based biomineralization. 展开更多
关键词 Metal ions BIOMINERALIZATION Drug delivery NANOMEDICINE Tumor therapy
原文传递
MV-mediated biomineralization mechanisms and treatments of biomineralized diseases
6
作者 Xuan Li Wei Zhang +1 位作者 Yubo Fan Xufeng Niu 《Medicine in Novel Technology and Devices》 2023年第1期1-14,共14页
As the quality of life improves,people pay more and more attention to health.They are concerned about the causes of diseases,and seek better treatments.The most common diseases are biomineralized diseases,four differe... As the quality of life improves,people pay more and more attention to health.They are concerned about the causes of diseases,and seek better treatments.The most common diseases are biomineralized diseases,four different kinds of typical examples among which are selected to elaborate their mechanisms and existing treatments.Whether it is tooth and bone in physiological mineralization or cartilage and blood vessel in pathological mineralization,they are all related to matrix vesicle(MV)-mediated biomineralization.MV-mediated biomineralization is the initial stage of biomineralization and the nucleation site mediating collagen mineralization.Definition,composition,biogenesis,and action mechanism of MVs are refined and expounded,especially a novel biomineralization pathway similar to exosome(EX)origin.Four differences are summarized to distinguish MVs and EXs.A series of treatments using MVs to solve biomineralized diseases such as tooth and bone defects,osteoarthritis and atherosclerosis are proposed,and the experimental extraction steps of MVs are summarized. 展开更多
关键词 Matrix vesicle BIOMINERALIZATION BIOGENESIS OSTEOARTHRITIS ATHEROSCLEROSIS
原文传递
Human osteoclast formation and resorptive function on biomineralized collagen 被引量:2
7
作者 Daniel de Melo Pereira Noel Davison Pamela Habibovic 《Bioactive Materials》 SCIE 2022年第2期241-252,共12页
Biomineralized collagen composite materials pose an intriguing alternative to current synthetic bone graft substitutes by offering a biomimetic composition that closely resembles native bone.We hypothesize that this c... Biomineralized collagen composite materials pose an intriguing alternative to current synthetic bone graft substitutes by offering a biomimetic composition that closely resembles native bone.We hypothesize that this composite can undergo cellular resorption and remodeling similar to natural bone.We investigate the formation and activity of human osteoclasts cultured on biomineralized collagen and pure collagen membranes in comparison to cortical bone slices.Human monocytes/macrophages from peripheral blood differentiate into multinucleated,tartrate-resistant alkaline phosphatase(TRAP)-positive osteoclast-like cells on all substrates.These cells form clear actin rings on cortical bone,but not on biomineralized collagen or pure collagen membranes.Osteoclasts form resorption pits in cortical bone,resulting in higher calcium ion concentration in cell culture medium;however,osteoclast resorption of biomineralized collagen and collagen membranes does not measurably occur.Activity of osteoclast enzymes-TRAP,carbonic anhydrase II(CA-II),and cathepsin-K(CTS-K)-is similar on all substrates,despite phenotypic differences in actin ring formation and resorption.The mesh-like structure,relatively low stiffness,and lack of RGD-containing binding domains are likely the factors responsible for preventing formation of stable actin rings on and resorption of(biomineralized)collagen membranes.This insight helps to guide further research toward the optimized design of biomineralized collagen composites as a more biomimetic bone-graft substitute. 展开更多
关键词 OSTEOCLASTOGENESIS Osteoclast resorption biomineralized collagen Intrafibrillar mineral Bone graft substitute
原文传递
Comparative Transcriptome Analysis of Shell-Matrix-Protein Genes and Observation of the Shell Microstructure in the Deep-Sea Clam Calyptogena marissinica
8
作者 SHI Yu LIU Dongting +1 位作者 YAO Gaoyou HE Maoxian 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期797-810,共14页
The deep-sea clam Calyptogena marissinica is widely distributed in the Haima cold seep ecosystem on the northwes-tern slope of the South China Sea with low pH values,low temperature and high pressure.Limited informati... The deep-sea clam Calyptogena marissinica is widely distributed in the Haima cold seep ecosystem on the northwes-tern slope of the South China Sea with low pH values,low temperature and high pressure.Limited information is available on the biomineralization of this species.In this research,we generated a comprehensive transcript dataset of C.marissinica’s mantle tissue,and a total of 19821 unigenes were assembled.Fourteen shell matrix proteins(SMP)-related genes were identified.The qPCR results showed that four out of six prismatic matrix genes(MSP2,MSP5,prisilkin-39,and shematrin),four out of the six nacreous matrix genes(perlucin,pif,pif97,and papilin),and two extrapallial fluid proteins(SPARC and calmodulin)were significantly expressed in the mantle.Both the nacreous and the prismatic layers are chrysanthemum-shaped,which are stacked on the top of each other to form a laminated nacreous structure.The alignment and phylogenetic analysis of MSP-5,Prisilkin-39,Perlucin,and Pif homologues showed that some amino acids of C.marissinica that differed from those detected in other molluscs may cause the different shape of the nacreous and prismatic layers,but do not lead to a change in the species’evolutionary status.These results indicated the conservation of the functions of SMP-related genes in C.marissinica,and the specific shape of the prismatic and nacreous layers of this deep-sea mollusc,which will contribute to the research on the molecular regulation mechanisms of biomineralization in C.marissinica and provide a new perspective to investigate biomineralization in deep-sea clams in general. 展开更多
关键词 TRANSCRIPTOME BIOMINERALIZATION mantle tissue shell Calyptogena marissinica
下载PDF
Enhanced Photocatalytic Activity of Z-scheme Meso-BiVO_(4)-Au-CdS for Degradation of Rhodamine B
9
作者 张雁伟 WANG Yanze +3 位作者 LI Junguo XIE Jingjing 王文宣 FU Zhengyi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期869-876,共8页
We synthesized BiVO_(4)mesocrystals with ordered assembly structure,and studied the structural order and the relationship between the photodegradation of Rhodamine B.Au nanoparticles(NPs)were successfully loaded onto ... We synthesized BiVO_(4)mesocrystals with ordered assembly structure,and studied the structural order and the relationship between the photodegradation of Rhodamine B.Au nanoparticles(NPs)were successfully loaded onto Meso-BiVO_(4)by light-assisted induction,and Cd nanoparticles were further selected to be deposited on Au nanoparticles to form Z-scheme photocatalyst Meso-BiVO_(4)-Au-CdS heterostructures.We try and propose to analyze its ordered assembly structure by XRD for the first time.The results show that Meso-BiVO_(4)is a mesocrystal with highly exposed(001)plane and directional assembly structure.The charge separation efficiency of all samples was studied by PL spectroscopy.The results show that the Z-scheme Meso-BiVO_(4)-Au-CdS can promote the charge separation and obtain the best carrier separation efficiency.Thus,it has the best photocatalytic activity in the experiment of photocatalytic degradation of rhodamine B.The main active species in the degradation process were confirmed by free radical trapping experiment,and the degradation mechanism was put forward. 展开更多
关键词 BIOMINERALIZATION photosynthesis mesocrystal PHOTOCATALYSIS TiO_(2) BiVO_(4)
下载PDF
Biomineralization of soil with crude soybean urease using different calcium salts
10
作者 Yajie Weng Junjie Zheng +2 位作者 Hanjiang Lai Mingjuan Cui Xingzhi Ding 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1788-1798,共11页
Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chl... Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chloride (CaCl_(2)),calcium acetate ((CH_(3)COO)_(2)Ca) and calcium nitrate (Ca(NO_(3))_(2)),were used to prepare the biotreatment solution to carry out the biomineralization tests in this paper.Two series of biomineralization tests in solution and sand column,respectively,were conducted.Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed to determine the microscopic characteristics of the precipitated calcium carbonate (CaCO_(3)) crystals.The experimental results indicate that the biomineralization effect is the best for the CaCl2 case,followed by (CH_(3)COO)_(2)Ca,and worst for Ca(NO_(3))_(2) under the test conditions of this study (i.e.1 mol/L of calcium salt-urea).The mechanism for the effect of the calcium salt on the biomineralization of crude soybean urease mainly involves: (1) inhibition of urease activity,and (2) influence on the crystal size and morphology of CaCO_(3).Besides Ca^(2+) ,the anions in solution can inhibit the activity of crude soybean urease,and NO_(3)− has a stronger inhibitory effect on the urease activity compared with both CH_(3)COO^(−) and Cl^(−) .The co-inhibition of Ca^(2+) and NO_(3)− on the activity of urease is the key reason for the worst biomineralization of the Ca(NO_(3))_(2) case in this study.The difference in biomineralization between the CaCl_(2) and (CH_(3)COO)_(2) Ca cases is strongly correlated with the crystal morphology of the precipitated CaCO_(3). 展开更多
关键词 BIOMINERALIZATION Crude soybean urease Calcium salt Influence mechanism
下载PDF
Biomimetic biomineralization nanoplatform-mediated differentiation therapy and phototherapy for cancer stem cell inhibition and antitumor immunity activation
11
作者 Shan Gao Meng Liu +7 位作者 Dongzhu Liu Xinru Kong Yuelin Fang Yingying Li Hang Wu Jianbo Ji Xiaoye Yang Guangxi Zhai 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第5期164-184,共21页
Growing evidence suggests that the presence of cancer stem cells(CSCs)is a major challenge in current tumor treatments,especially the transition from non-CSCs to differentiation of CSCs for evading conventional therap... Growing evidence suggests that the presence of cancer stem cells(CSCs)is a major challenge in current tumor treatments,especially the transition from non-CSCs to differentiation of CSCs for evading conventional therapies and driving metastasis.Here we propose a therapeutic strategy of synergistic differentiation therapy and phototherapy to induce differentiation of CSCs into mature tumor cells by differentiation inducers and synergistic elimination of them and normal cancer cells through phototherapy.In this work,we synthesized a biomimetic nanoplatform loaded with IR-780 and all-trans retinoic acid(ATRA)via biomineralization.This method can integrate aluminum ions into small-sized protein carriers to form nanoclusters,which undergo responsive degradation under acidic conditions and facilitate deep tumor penetration.With the help of CSC differentiation induced by ATRA,IR-780 inhibited the self-renewal of CSCs and cancer progression by generating hyperthermia and reactive oxygen species in a synergistic manner.Furthermore,ATRA can boost immunogenic cell death induced by phototherapy,thereby strongly causing a systemic anti-tumor immune response and efficiently eliminating CSCs and tumor cells.Taken together,this dual strategy represents a new paradigm of targeted eradication of CSCs and tumors by inducing CSC differentiation,improving photothermal therapy/photodynamic therapy and enhancing antitumor immunity. 展开更多
关键词 Cancer stem cells Differentiation therapy PHOTOTHERAPY BIOMINERALIZATION Immunogenic cell death
下载PDF
Recent progress in microbial cell surface display systems and their application on biosensors
12
作者 HAIYING CHEN YUQING WU +1 位作者 BAOJIAN HUANG LEI HAN 《BIOCELL》 SCIE 2023年第6期1213-1223,共11页
Microbial cell surface display technology is a recombinant technology to express target proteins on the cell membrane,which can be used to redesign the cell surface with functional proteins and peptides.Bacterial and ... Microbial cell surface display technology is a recombinant technology to express target proteins on the cell membrane,which can be used to redesign the cell surface with functional proteins and peptides.Bacterial and yeast surface display systems are the most common cell surface display systems of prokaryotic and eukaryotic proteins,that are widely applied as the core elements in the field of biosensors due to their advantages,including enhanced stability,high yield,good safety,expression of larger and more complex proteins.To further promote the performance of biosensors,the biomineralized microbial surface display technology was proposed.This review summarized the different microbial surface display systems and the biomineralized surface display systems,where the mechanisms of surface display and biomineralization were introduced.Then we described the recent progress of their applications on biosensors for different types of detection targets.Finally,the outlooks and tendencies were discussed and forecasted with the expectation to provide some general functions and enlightenments to this aspect of research. 展开更多
关键词 BIOSENSOR Microbial surface display technology Bacterial surface display Yeast surface display BIOMINERALIZATION Analytical chemistry
下载PDF
Biologically Inspired Self-assembling Synthesis of Bone-like Nano-hydroxyapatite/PLGA-(PEG-ASP)_n Composite: A New Biomimetic Bone Tissue Engineering Scaffold Material 被引量:13
13
作者 郭晓东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期234-237,共4页
A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n cop... A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering. 展开更多
关键词 bone tissue engineering biomimetic material BIOMINERALIZATION self-asserrdaling poly D L-lactide-co-glycolide hydroxyapatite
下载PDF
Characterization of calcium deposition induced by Synechocystis sp. PCC6803 in BG11 culture medium 被引量:7
14
作者 闫华晓 韩作振 +8 位作者 赵辉 周仕学 迟乃杰 韩梅 寇小燕 张艳 徐琳琳 田晨晨 秦松 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2014年第3期503-510,共8页
Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate d... Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate deposition were investigated. Inoculated BGll in different calcium ion concentrations was used for the experimental group, while the BGll culture medium was used for the control group. The surface morphologies of the calcium carbonate deposits in the experimental and control groups were determined by scanning and transmission electron microscopy. The deposits were analyzed by electronic probe micro-analysis, Fourier transform infrared spectrum, X-ray diffraction, thermal gravimetric analysis and differential scanning calorimetry. The results show that the surfaces of the crystals in the experimental group were hexahedral in a scaly pattern. The particle sizes were micrometer-sized and larger than those in the control group. The deposits of the control group contained calcium (Ca), carbon (C), oxygen (O), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), and other elements. The deposits in the experimental group contained Ca, C, and O only. The deposits of both groups contained calcite. The thermal decomposition temperature of the deposits in the control group was lower than those in the experimental group. It showed that the CaCO3 deposits of the experimental group had higher thermal stability than those of the control group. This may be due to the secondary metabolites produced by the algae cells, which affect the carbonate crystal structure and result in a close-packed structure. The algae cells that remained after thermal weight loss were heavier in higher calcium concentrations in BGll culture media. There may be more calcium- containing crystals inside and outside of these cells. These results shall be beneficial for understanding the formation mechanism of carbonate minerals. 展开更多
关键词 Synechocystis sp. PCC6803 preferred orientation BIOMINERALIZATION calcium carbonate thermal stability
下载PDF
Biomineralization of Uranium: A Simulated Experiment and Its Significance 被引量:5
15
作者 MINMaozhong HuifangXU +3 位作者 L.L.BARTON WANGJinping PENGXinjian H.WIATROWSKI 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第1期134-138,共5页
A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were:... A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were: 35°C, pH=7.0-7.4, corresponding to the environments of formation of the sandstone-hosted interlayer oxidation-zone type uranium deposits in Xinjiang, NW China. Uraninite was formed on the surface of the host bacteria after a one-week's incubation. Therefore, sulfate-reducing bacteria, which existed extensively in Jurassic sandstone-producing environments, might have participated in the biomineralization of this uranium deposit. There is an important difference in the order- disorder of the crystalline structure between the uraninite produced by Desulfovibrio desulfuricans and naturally occurring uraninite. Long time and slow precipitation and growth of uraninite in the geological environment might have resulted in larger uraninite crystals, with uraninite nanocrystals arranged in order, whereas the experimentally produced uraninite is composed of unordered uraninite nanocrystals which, in contrast, result from the short time span of formation and rapid precipitation and growth of uraninite. The discovery has important implications for understanding genetic significance in mineralogy, and also indicates that in-situ bioremediation of U-contaminated environments and use of biotechnology in the treatment of radioactive liquid waste is being contemplated. 展开更多
关键词 microbial biomineralization URANINITE sulfate-reducing bacteria sandstone-hosted uranium deposit simulated experiment
下载PDF
Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloy 被引量:6
16
作者 Tso-Chang Wu Sameehan SJoshi +3 位作者 Yee-Hsien Ho Mangesh VPantawane Subhasis Sinha Narendra B.Dahotre 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1414-1426,共13页
The present work explored effects of laser surface melting on microstructure and surface topography evolution in AZ31B magnesium alloy.Thermokinetic effects experienced by the material during laser surface melting wer... The present work explored effects of laser surface melting on microstructure and surface topography evolution in AZ31B magnesium alloy.Thermokinetic effects experienced by the material during laser surface melting were simulated using a multiphysics finite element model.Microstructure and phase evolution were examined using scanning electron microscopy,X-ray diffraction,and electron back scatter diffraction.Surface topography was evaluated using white light interferometry.The interaction of surface melted samples with simulated body fluid was monitored by contact angle measurements and immersion studies up to 7 days.Laser surface melting led to formation of a refined microstructure with predominantly basal crystallographic texture.Concurrently,the amount ofβphase(Mg_(17)Al_(12))increased with an increase in the laser fluence.βphase preferentially decorated the cell boundaries.In terms of topography,the surface became progressively rougher with an increase in laser fluence.As a result,upon immersion in simulated body fluid,the laser surface melted samples showed an improved wettability,corrosion resistance,and precipitation of mineral having composition closer to the hydroxyapatite bone mineral compared to the untreated sample. 展开更多
关键词 Laser surface melting Magnesium alloy Laser surface engineering BIOMINERALIZATION
下载PDF
Growth of Hydroxyapatite Crystal in the Presence of Origanic Film 被引量:4
17
作者 Yong LIU, Suping HUANG, Xiaohong DAN and Kechao ZHOUState Key Laboratory for Powder Metallurgy, Central South University, Changsha 410083, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第2期223-226,共4页
The growth of hydroxyapatite (HAp) crystal in the presence of hexadecylamine was investigated. Due to its high polarity and high charge density, the organic film could increase the ion supersaturation on its surface. ... The growth of hydroxyapatite (HAp) crystal in the presence of hexadecylamine was investigated. Due to its high polarity and high charge density, the organic film could increase the ion supersaturation on its surface. Therefore the growth of pure HAp crystals was accelerated. Moreover, the positive headgroups of the organic film could act as recognized nucleation sites and orient the growth of HAp crystals along the <0001> direction. 展开更多
关键词 BIOMINERALIZATION HYDROXYAPATITE Crystal growth
下载PDF
High efficient removal and mineralization of Cr(VI)from water by functionalized magnetic fungus nanocomposites 被引量:3
18
作者 CHEN Run-hua CHENG Yu-ying +3 位作者 WANG Ping LIU Zhi-ming WANG Yu-guang WANG Yang-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第5期1503-1514,共12页
A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in... A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in detail.At pH of 5.0 and temperature of 323.15 K,MFH@GO had higher adsorption capacity to Cr(VI)(58.4 mg/g)than the unmodified fungus and GO.Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),thermogravimetry and differential thermal analysis(TG-DTA),scanning electron microscopy and energy dispersive X-Ray spectroscopy(SEM-EDX)were employed to determine the characteristics of MFH@GO.Results showed that magnetic graphene oxide nanoparticles significantly enhanced the physiochemical properties of the fungi.In addition,the adsorption mechanisms analyses show that Cr(VI)could be reduced and mineralized into ferric chromate in residues.These results suggested that MFH@GO could be used as an promising and alternative biosorbent for removal of Cr(VI)from industrial wastewater. 展开更多
关键词 wastewater CR(VI) fungus nanocomposites BIOMINERALIZATION
下载PDF
Does acid pickling of Mg-Ca alloy enhance biomineralization? 被引量:3
19
作者 Shebeer A Rahim VP Muhammad Rabeeh +1 位作者 M A Joseph T Hanas 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期1028-1038,共11页
The mechanical and physical properties of biodegradable magnesium(Mg)alloys make them suitable for temporary orthopaedic implants.The success of these alloys depends on their performance in the physiological environme... The mechanical and physical properties of biodegradable magnesium(Mg)alloys make them suitable for temporary orthopaedic implants.The success of these alloys depends on their performance in the physiological environment.In the present work,surface modification of Mg-Ca binary alloy by acid pickling for better biomineralization and controlled biodegradation is explored.The corrosion rates of nitric and phosphoric acid treated samples were analysed by conducting electrochemical corrosion tests.In vitro degradation behaviour was studied using immersion test in simulated body fluid(SBF).The sample surfaces were characterized using scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDS),Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS).It is seen that acid pickling leads to significant improvement in biomineralization and develop in situ calcium phosphate(Ca P)coating on the sample surfaces.In addition,the treated samples recorded a reduced degradation rate in the SBF compared to untreated samples.Thus,acid pickling is suggested as an effective surface treatment method to tailor the biomineralization and degradation behaviour of the Mg-Ca alloy in the physiological environment. 展开更多
关键词 Inorganic acid pickling Magnesium alloy Surface pretreatment Surface characterization BIOMINERALIZATION Degradation rate
下载PDF
Redox control of magnetosome biomineralization 被引量:2
20
作者 Yingjie LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第6期2070-2081,共12页
Magnetotactic bacteria can orientate in the Earth’s magnetic field to search for their preferred microoxic environments,which is achieved by their unique organelles,the magnetosomes.Magnetosomes contain nanometer-siz... Magnetotactic bacteria can orientate in the Earth’s magnetic field to search for their preferred microoxic environments,which is achieved by their unique organelles,the magnetosomes.Magnetosomes contain nanometer-sized crystal particles of magnetic iron minerals,which are only synthesized in lowoxygen environments.Although the mechanism of aerobic repression for magnetosome biomineralization has not yet fully understood,a series of studies have verified that redox modulation is pivotal for magnetosome formation.In this review,these advances in redox modulation for magnetosome biosynthesis are highlighted,mainly including respiration pathway enzymes,specific magnetosome-associated redox proteins,and oxygen-or nitrate-sensing regulators.Furthermore,their relationship during magnetosome biomineralization is discussed to give insight into redox control and biomineralization and inspire potential solutions for the application of respiration pathways to improve the yields of magnetosome. 展开更多
关键词 magnetotactic bacteria MAGNETOSOME BIOMINERALIZATION RESPIRATION redox control
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部