Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generati...Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials,and is driving the future paradigm shift of modern materials science and engineering.However,the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology,and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions.As one of the most valuable advanced manufacturing technologies of the 21st century,laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing.This review outlines the processing principles,manufacturing strategies,potential applications,challenges,and future development outlook of laser processing in bionic manufacturing domains.Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated:subtractive manufacturing,equivalent manufacturing,and additive manufacturing.The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces,bionic equivalent manufacturing for surface strengthening,and bionic additive manufacturing aiming to achieve bionic spatial structures,are reported.Finally,the key problems faced by laser-based bionic manufacturing,its limitations,and the development trends of its existing technologies are discussed.展开更多
A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional ...A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional bending configuration,and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA.In this paper,the static and kinematic analysis of 3D-FRSPA are carried out in detail.The effects of fiber,pneumatic chamber and segment length,and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed,respectively.The soft mobile robot composed of 3D-FRSPA has the ability to crawl.Finally,the crawling processes of the soft mobile robot on different road conditions are studied,respectively,and the motion mechanism of the mobile actuator is shown.The numerical results show that the soft mobile robots have a good comprehensive performance,which verifies the correctness of the proposedmodel.This work shows that the proposed structures have great potential in complex road conditions,unknown space detection and other operations.展开更多
The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the...The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the application of structural bionic approaches. Giant waterlily leaf ribs and cactus stem are investigated for their optimal framework and superior performance. Their structural characteristics are extracted and used in the bio-inspired design of Lin MC6000 gantry machining center crossbeam. By mimicking analogous network structure, the bionic model is established, which has better load-carrying capacity than conventional distribution. Finite Element Method (FEM) is used for numerical simulation. Results show better specific stiffness of the bionic model, which is increased by 17.36%. Finally the scaled models are fabricated by precision casting for static and dynamic tests. The physical experiments are compared to numerical simulation. The results show that the maximum static deformation of the bionic model is reduced by about 16.22%, with 3.31% weight reduction. In addition, the first four natural frequencies are improved obviously. The structural bionic design is a valuable reference for updating conventional mechanical structures with better performance and less material consumption.展开更多
A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parame...A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parameter relationship betweenhollow stem of plant and the minimum weight was deduced in detail.In order to improve SSE of pylons, the structural characteristicsof hollow stem were investigated and extracted.Bionic pylon was designed based on analogous biological structuralcharacteristics.Using finite element method based simulation, the displacements and stresses in the bionic pylon were comparedwith those of the conventional pylon.Results show that the SSE of bionic pylon is improved obviously.Static, dynamic andelectromagnetism tests were carried out on conventional and bionic pylons.The weight, stress, displacement and Radar CrossSection (RCS) of both pylons were measured.Experimental results illustrate that the SSE of bionic pylon is markedly improvedthat specific strength efficiency and specific stiffness efficiency of bionic pylon are increased by 52.9% and 43.6% respectively.The RCS of bionic pylon is reduced significantly.展开更多
Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are propose...Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures.展开更多
Structural bionic design lacks mature and scientific theories, and the excellent structural characteristics of natural organisms sometimes cannot be transferred into engineering structures effectively. Aiming at overc...Structural bionic design lacks mature and scientific theories, and the excellent structural characteristics of natural organisms sometimes cannot be transferred into engineering structures effectively. Aiming at overcoming the existing problems, this paper summarizes three related theories: similarity theory, fuzzy evaluation theory and optimization theory. Based on the related theories, a method of structural bionic design is introduced, which includes four steps: selecting the most useful structural characteristic of natural organism; analyzing the structural characteristic finally chosen for engineering problem; completing the structural bionic design for engineering structure; and verifying the structural bionic design. Similarity theory and fuzzy evaluation theory are employed to achieve Step 1. In Step 2 and Step 3, optimization theory is employed to analyze the parameters of structures. Together with the thoughts of simplification and grouping, optimization theory can reveal the relationship between organism structure and engineering structure, providing a way to structural bionic design. A general evaluation criterion is proposed in Step 4, which is feasible to evaluate the performance of different structures. Finally, based on the method, a structural bionic design of thin-walled cylindrical shell is introduced.展开更多
Surgical electrodes rely on thermal effect of high-frequency current and are a widely used medical tool for cutting and coagulating biological tissue.However,tissue adhesion on the electrode surface and thermal injury...Surgical electrodes rely on thermal effect of high-frequency current and are a widely used medical tool for cutting and coagulating biological tissue.However,tissue adhesion on the electrode surface and thermal injury to adjacent tissue are serious problems in surgery that can affect cutting performance.A bionic microstriped structure mimicking a banana leaf was constructed on the electrode via nanosecond laser surface texturing,followed by silanization treatment,to enhance lyophobicity.The effect of initial,simple grid-textured,and bionic electrodes with different wettabilities on tissue adhesion and thermal injury were investigated using horizontal and vertical cutting modes.Results showed that the bionic electrode with high lyophobicity can effectively reduce tissue adhesion mass and thermal injury depth/area compared with the initial electrode.The formation mechanism of adhered tissue was discussed in terms of morphological features,and the potential mechanism for antiadhesion and heat dissipation of the bionic electrode was revealed.Furthermore,we evaluated the influence of groove depth on tissue adhesion and thermal injury and then verified the antiadhesion stability of the bionic electrode.This study demonstrates a promising approach for improving the cutting performance of surgical electrodes.展开更多
Because of the complex nerve anatomy and limited regeneration ability of natural tissue,the current treatment effect for long-distance peripheral nerve regeneration and spinal cord injury(SCI)repair is not satisfactor...Because of the complex nerve anatomy and limited regeneration ability of natural tissue,the current treatment effect for long-distance peripheral nerve regeneration and spinal cord injury(SCI)repair is not satisfactory.As an alternative method,tissue engineering is a promising method to regenerate peripheral nerve and spinal cord,and can provide structures and functions similar to natural tissues through scaffold materials and seed cells.Recently,the rapid development of 3D printing technology enables researchers to create novel 3D constructs with sophisticated structures and diverse functions to achieve high bionics of structures and functions.In this review,we first outlined the anatomy of peripheral nerve and spinal cord,as well as the current treatment strategies for the peripheral nerve injury and SCI in clinical.After that,the design considerations of peripheral nerve and spinal cord tissue engineering were discussed,and various 3D printing technologies applicable to neural tissue engineering were elaborated,including inkjet,extrusion-based,stereolithography,projection-based,and emerging printing technologies.Finally,we focused on the application of 3D printing technology in peripheral nerve regeneration and spinal cord repair,as well as the challenges and prospects in this research field.展开更多
This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The ...This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The curved beam is simplified as an inclined horizontal spring,and a static analysis is carried out to explore the effects of different structural parameters on the stiffness performance of the QZS isolator.The finite element simulation analysis verifies that the QZS isolator can significantly reduce the first-order natural frequency under the load in the QZS region.The harmonic balance method(HBM)is used to explore the effects of the excitation amplitude,damping ratio,and stiffness coefficient on the system’s amplitude-frequency response and transmissibility performance,and the accuracy of the analytical results is verified by the fourth-order Runge-Kutta integral method(RK-4).The experimental data of the QZS isolator prototype are fitted to a ninth-degree polynomial,and the RK-4 can theoretically predict the experimental results.The experimental results show that the QZS isolator has a lower initial isolation frequency and a wider isolation frequency bandwidth than the equivalent linear isolator.The frequency sweep test of prototypes with different harmonic excitation amplitudes shows that the initial isolation frequency of the QZS isolator is 3 Hz,and it can isolate 90%of the excitation signal at 7 Hz.The proposed biomimetic spider-like QZS isolator has high application prospects and can provide a reference for optimizing low-frequency or ultra-low-frequency isolators.展开更多
With the deepening of human research on deep space exploration,our research on the soft landing methods of landers has gradually deepened.Adding a buffer and energy-absorbing structure to the leg structure of the land...With the deepening of human research on deep space exploration,our research on the soft landing methods of landers has gradually deepened.Adding a buffer and energy-absorbing structure to the leg structure of the lander has become an effective design solution.Based on the energy-absorbing structure of the leg of the interstellar lander,this paper studies the appearance characteristics of the predatory feet of the Odontodactylus scyllarus.The predatory feet of the Odontodactylus scyllarus can not only hit the prey highly when preying,but also can easily withstand the huge counter-impact force.The predatory feet structure of the Odontodactylus scyllarus,like a symmetrical cone,shows excellent rigidity and energy absorption capacity.Inspired by this discovery,we used SLM technology to design and manufacture two nickel-titanium samples,which respectively show high elasticity,shape memory,and get better energy absorption capacity.This research provides an effective way to design and manufacture high-mechanical energy-absorbing buffer structures using bionic 3D printing technology and nickel-titanium alloys.展开更多
Bionic surface structures, inspired by the flora, were developed for Sheet-Bulk Metal Forming (SBMF) in order to locally control the friction condition by adjusting the wetting behavior. Five bionic structures were ...Bionic surface structures, inspired by the flora, were developed for Sheet-Bulk Metal Forming (SBMF) in order to locally control the friction condition by adjusting the wetting behavior. Five bionic structures were micromilled on ASP 2023 in annealed as well as hardened and tempered conditions. Subsequently, the structured surfaces were plasma-nitrided and coated with a CrA1N thin film. The influence of the treatment method on the structural geometry was investigated with the aid of a scanning electron microscope and 3D-profilometer. The wetting behaviors of water and deep drawing oil (Berufluid ST6007) on bionic surfaces were evaluated using contact angle measurements. The resulting micro-milled structures exhibit an almost identical shape as their bionic models. However, the roughness of the structured surfaces is influenced by the microstructure. The combination of plasma-nitriding and Physical Vapor Deposition (PVD) leads to an increase in roughness. All bionic struc- tures possess higher contact angles than that of the unstructured surfaces when wetted by water. This can be explained by the fact that the structural elevations block the spreading. When the bionic surfaces are wetted by deep drawing oil, the lubricant spreads in the structural cavities, leading to smaller contact angles. Furthermore, the anisotropy of the structure has an influence on the wetting behavior.展开更多
Flow control can effectively reduce the aerodynamic noise radiated from a circular cylinder. As one of the flow control methods, a bionic method, inspired by the serrations at the leading edge of owls' wing, was prop...Flow control can effectively reduce the aerodynamic noise radiated from a circular cylinder. As one of the flow control methods, a bionic method, inspired by the serrations at the leading edge of owls' wing, was proposed in this paper. The effects of bionic serrated structures arranged on the upper and lower sides of a cylinder on the aerodynamic and aeroacoustic performance of the cylinder were numerically investigated. At a free stream speed of 24.5 m.s-1, corresponding to Reynolds number of 1.58 × 10^4, the simulation results indicate that the bionic serrated structures can decrease the frequency of the vortex shedding and control the fluctuating aerodynamic force acting on the cylinder, thus reduce the aerodynamic noise. A qualitative view of the vorticity in the wake of the cylinder suggest that the serrated structures reduce aerodynamic sound by suppressing the unsteady motion of vortices.展开更多
Using an electron microscope to observe the microstructure of a porcupine quills cross-section and a bionic method,a new bionic structure was proposed.The performance of the structure in terms of energy absorption,max...Using an electron microscope to observe the microstructure of a porcupine quills cross-section and a bionic method,a new bionic structure was proposed.The performance of the structure in terms of energy absorption,maximum impact force withstood,and impact force efficiency was evaluated using Ansys finite element simulation software to simulate the structure's impact.To examine the impact of ribs on the structural performance of the bionic porcupine quills,a control structure was developed.According to the results of the finite element simulation,the presence of ribs in the Bionic porcupine quills structure can transfer stress uniformly to the overall structure and share stress for some of the rupture-prone regions.Ribs reduce stress concentration in specific areas and increase the impact force efficiency of the structure.The SEA and IFE values of bionic porcupine quills were 30.01 kJ/kg and 84.22%,respectively.The structure is then optimized for parameter design in order to find the optimal structure by response surface in order to improve the structure's SEA and decrease its MIF.In order to evaluate the precision of the response surface,the optimal structure predicted is validated using finite element simulation.展开更多
For the large amount of waste heat wasted in daily life and industrial production,we propose a new type of flexible thermoelectric generators(F-TEGs)which can be used as a large area bionic skin to achieve energy harv...For the large amount of waste heat wasted in daily life and industrial production,we propose a new type of flexible thermoelectric generators(F-TEGs)which can be used as a large area bionic skin to achieve energy harvesting of thermal energy.With reference to biological structures such as pinecone,succulent,and feathers,we have designed and fabricated a biomimetic flexible TEG that can be applied in a wide temperature range which has the highest temperature energy harvesting capability currently.The laminated free structure of the bionic F-TEG dramatically increases the efficiency and density of energy harvesting.The F-TEGs(single TEG only 101.2 mg in weight),without an additional heat sink,demonstrates the highest output voltage density of 286.1 mV/cm^(2)and the maximum power density is 66.5 mW/m^(2) at a temperature difference of nearly 1000℃.The flexible characteristics of F-TEGs make it possible to collect the diffused thermal energy by flexible attachment to the outer walls of high-temperature pipes and vessels of different diameters and shapes.This work shows a new design and application concept for flexible thermal energy collectors,which fills the gap of flexible energy harvesting in high-temperature environment.展开更多
This study addresses the modified bionic vibration isolation technology by introducing the electromagnetic system to simulate biological damping characteristics.It has been proven effective in improving the vibration ...This study addresses the modified bionic vibration isolation technology by introducing the electromagnetic system to simulate biological damping characteristics.It has been proven effective in improving the vibration environment.By assuming the spacecraft-adapter system as a two-degree-of-freedom system,an excellent simplified model can be derived.The novel bionic vibration isolation device(ABVS-EMVI),which combines an active bionic variable-stiffness device(ABVSVI)with the electromagnetic system,is proposed for the purpose of isolating vibration and harvesting energy at the same time.The dynamic equations of the spacecraft-adapter system with ABVS-EMVI are obtained using the Taylor expansion within the framework of the Lagrange equation,and the harmonic balance method is introduced to acquire the amplitude and voltage response of the system.The results indicate that the electromagnetic system can enhance the vibration isolation performance and provide energy harvesting capabilities.After confirming the ability of ABVS-EMVI to deal with different forms and amplitudes of excitation,the performance of vibration isolation and energy harvesting is investigated in terms of various parameters,and several new conclusions have been drawn.展开更多
A new process for the fabrication of sharkskin bionic structures on metal surfaces is proposed.The sharkskin bionic surface was successfully machined on the surface of IN718 by laser sequencing of the abrasive belt su...A new process for the fabrication of sharkskin bionic structures on metal surfaces is proposed.The sharkskin bionic surface was successfully machined on the surface of IN718 by laser sequencing of the abrasive belt surface,laser processing of the layered scale-like structure,and ribbed texture grinding.The flexible contact properties of belt grinding allow ribbed structures to be machined uniformly on a hierarchical,scale-like microstructure.Sharkskin bionic microstructures with radii greater than 75µm were prepared after parameter optimisation.The influence of processing parameters on the geometrical accuracy of the microstructure was investigated,the microstructure microform and elemental distribution were analyzed,and the relationship between the ribbed microstructure and chemical properties of the surface of the bionic sharkskin on wettability was revealed.The results indicate that reducing the laser power and increasing the laser scan rate can reduce the laser thermal effect and improve the microstructure processing accuracy.The laser ablation process is accompanied by a violent chemical reaction that introduces a large amount of oxygen and carbon elements and infiltrates them at a certain depth.The wettability of the surface undergoes a transition from hydrophilic(contact angle 69.72°)to hydrophobic(contact angle 131.56°)due to the adsorption of C-C/C-H and the reduction of C=O/O=C-O during the placement process.The ribbed microstructure changes the solid-liquid contact on the surface into a solid-liquid-gas contact,which has an enhanced effect on hydrophobicity.This study is a valuable guide to the processing of hydrophobic layered bionic microstructures.展开更多
With the increasing size of space facilities,on-orbit assembly requires robots to move on different heights of trusses.This paper proposes a bio-inspired attachment mechanism for robot feet to enable climbing on diffe...With the increasing size of space facilities,on-orbit assembly requires robots to move on different heights of trusses.This paper proposes a bio-inspired attachment mechanism for robot feet to enable climbing on different heights of trusses.Inspired by the attachment and grasping abilities of Dynastes Hercules,we utilize its foot microstructures,such as microhooks and setae,to achieve efficient contact and firm grip with the surface.The morphology and arrangement of these structures can inspire the design of robot feet to improve their grasping and stability performance.We study the biological structure of Dynastes Hercules,design and optimize the bio-inspired structure,analyze the influence of various factors from theoretical and experimental perspectives,and verify the feasibility of the scheme through simulation.We propose an ideal climbing strategy that provides useful reference for robot applications in practice.Moreover,the influence laws of various factors in this paper can be applied to robot foot design to improve their operation ability and stability performance in the space environment.This bio-inspired mechanism can improve robot working range and efficiency,which is critical for on-orbit assemblyin space.展开更多
For high-speed moving objects,drag reduction has been a prolonged major challenge.To address this problem,passive and negative strategies have been proposed in the preceding decades.The integration of creatures and na...For high-speed moving objects,drag reduction has been a prolonged major challenge.To address this problem,passive and negative strategies have been proposed in the preceding decades.The integration of creatures and nature has been continuously perfected during biological evolution.Unique structure characteristics,material properties,and special functions of marine organisms can provide inexhaustible inspirations to solve this intractable problem of drag reduction.Therefore,a simple and low-cost laser ablation method was proposed.A multi-scale and multi-level riblet(MSLR)surface inspired by the denticles of the sharkskin was fabricated by controlling the density of the laser path and ablation times.The morphology and topographic features were characterised using an electron microscope and a scanning white-light interfering profilometer.Then,the drag reduction capacity of the bionic riblet surface was measured in a circulating water tunnel.Finally,the mechanism of drag reduction was analysed by the computational fluid dynamics(CFD)method.The results show that the MSLR surface has a stable drag reduction capacity with an increase in Reynold(Re)number which was contributed by high-low velocity stripes formed on the MSLR surface.This study can provide a reference for fabricating spatial riblets with efficient drag reduction at different values of Re and improving marine antifouling.展开更多
Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to gener...Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to generate negative stiffness and design a new quasi-zero stiffness isolator via torsion springs,distinguishing from the existing tension spring structures in the literature.The nonlinear mathematical model of the proposed structure is developed and the corresponding dynamic properties are further investigated by using the Harmonic Balance method and ADAMS verification.To evaluate the vibration isolation performance,typical three-springs quasi-zero stiffness(TS QZS)system is selected to compare with the proposed bionic structure.And the graphical processing unit(GPU)parallel technology is applied to perform necessary two-parameter analyses,providing more insights into the effects of parameters on the transmissibility.It is shown that the proposed structure can show advantages over the typical TS QZS system in a wider vibration isolation range for harmonic excitation case and shorter decay time for the impact excitation case.展开更多
High-speed machine tool working table restrains the machining accuracy and machining efficiency,so lightweight design of the table is an important issue.In nature,leaf has developed a plate structure that maximizes th...High-speed machine tool working table restrains the machining accuracy and machining efficiency,so lightweight design of the table is an important issue.In nature,leaf has developed a plate structure that maximizes the surface-to-volume ratio.It can be seen as a plate structure stiffened by veins.Compared with a high-speed machine tool working table,leaf veins play a role of supporting part which is similar to that of stiffening ribs,and they can provide some new design ideas for lightweight design of the table.In this paper,distribution rules of leaf veins were investigated,and a structural bionic design for the table was achieved based on regulation of leaf veins.First,statistical analysis on geometric structure of leaf veins was carried out,and four distribution rules were obtained.Then,relevant mechanical models were developed and analyzed in finite element software.Based on the results from mechanical analysis on those relevant models,the four distribution rules were translated into the design rules and a structural bionic design for the working table was achieved.Both simulation and experimental verifications were carried out,and results showed that the average displacement of the working table was reduced by about 33.9%.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 52235006 and 52025053)the National Key Research and Development Program of China (No. 2022YFB4600500)
文摘Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials,and is driving the future paradigm shift of modern materials science and engineering.However,the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology,and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions.As one of the most valuable advanced manufacturing technologies of the 21st century,laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing.This review outlines the processing principles,manufacturing strategies,potential applications,challenges,and future development outlook of laser processing in bionic manufacturing domains.Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated:subtractive manufacturing,equivalent manufacturing,and additive manufacturing.The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces,bionic equivalent manufacturing for surface strengthening,and bionic additive manufacturing aiming to achieve bionic spatial structures,are reported.Finally,the key problems faced by laser-based bionic manufacturing,its limitations,and the development trends of its existing technologies are discussed.
基金work is supported by the Fundamental Research Funds for the Central Universities(Grant No.B230205021)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(GrantNo.KYCX22_0592).The financial supports are gratefully acknowl-edged.
文摘A novel three-dimensional-fiber reinforced soft pneumatic actuator(3D-FRSPA)inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed.It has an omni-directional bending configuration,and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA.In this paper,the static and kinematic analysis of 3D-FRSPA are carried out in detail.The effects of fiber,pneumatic chamber and segment length,and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed,respectively.The soft mobile robot composed of 3D-FRSPA has the ability to crawl.Finally,the crawling processes of the soft mobile robot on different road conditions are studied,respectively,and the motion mechanism of the mobile actuator is shown.The numerical results show that the soft mobile robots have a good comprehensive performance,which verifies the correctness of the proposedmodel.This work shows that the proposed structures have great potential in complex road conditions,unknown space detection and other operations.
基金Acknowledgements The research was sponsored by the Natural Science Foundation of China (50975012), and the Scientific Research Foundation for the Outstanding Young Scientist of Shandong Province (2008BS05007).
文摘The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the application of structural bionic approaches. Giant waterlily leaf ribs and cactus stem are investigated for their optimal framework and superior performance. Their structural characteristics are extracted and used in the bio-inspired design of Lin MC6000 gantry machining center crossbeam. By mimicking analogous network structure, the bionic model is established, which has better load-carrying capacity than conventional distribution. Finite Element Method (FEM) is used for numerical simulation. Results show better specific stiffness of the bionic model, which is increased by 17.36%. Finally the scaled models are fabricated by precision casting for static and dynamic tests. The physical experiments are compared to numerical simulation. The results show that the maximum static deformation of the bionic model is reduced by about 16.22%, with 3.31% weight reduction. In addition, the first four natural frequencies are improved obviously. The structural bionic design is a valuable reference for updating conventional mechanical structures with better performance and less material consumption.
基金support by National Natural Science Foundation of China(Grant No.50975012)
文摘A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parameter relationship betweenhollow stem of plant and the minimum weight was deduced in detail.In order to improve SSE of pylons, the structural characteristicsof hollow stem were investigated and extracted.Bionic pylon was designed based on analogous biological structuralcharacteristics.Using finite element method based simulation, the displacements and stresses in the bionic pylon were comparedwith those of the conventional pylon.Results show that the SSE of bionic pylon is improved obviously.Static, dynamic andelectromagnetism tests were carried out on conventional and bionic pylons.The weight, stress, displacement and Radar CrossSection (RCS) of both pylons were measured.Experimental results illustrate that the SSE of bionic pylon is markedly improvedthat specific strength efficiency and specific stiffness efficiency of bionic pylon are increased by 52.9% and 43.6% respectively.The RCS of bionic pylon is reduced significantly.
基金The authors are grateful to the National Natural Science Foundation of China(Grant No.11902183)the Doctoral Research Foundation of Shandong University of Technology(Grant No.4041/418017).
文摘Thin-walled structures have been used in many fields due to their superior mechanical properties.In this paper,two types of hierarchical multi-cell tubes,inspired by the self-similarity of Pinus sylvestris,are proposed to enhance structural energy absorption performance.The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load.The theoreticalmodel of themean crushing force is also derived based on the simplified super folded element theory.The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes are further improved with the increase of hierarchical sub-structures.It can be also obtained that the energy absorption performance of corner self-similar tubes is better than edge self-similar tubes.Furthermore,multiobjective optimization of the hierarchical tubes is constructed by employing the response surface method and genetic algorithm,and the corresponding Pareto front diagram is obtained.This research provides a new idea for the crashworthiness design of thin-walled structures.
基金Supported by National Natural Science Foundation of China (No. 50975012)Research Fund for the Doctoral Program of Higher Education of China (No. 20091102110022)
文摘Structural bionic design lacks mature and scientific theories, and the excellent structural characteristics of natural organisms sometimes cannot be transferred into engineering structures effectively. Aiming at overcoming the existing problems, this paper summarizes three related theories: similarity theory, fuzzy evaluation theory and optimization theory. Based on the related theories, a method of structural bionic design is introduced, which includes four steps: selecting the most useful structural characteristic of natural organism; analyzing the structural characteristic finally chosen for engineering problem; completing the structural bionic design for engineering structure; and verifying the structural bionic design. Similarity theory and fuzzy evaluation theory are employed to achieve Step 1. In Step 2 and Step 3, optimization theory is employed to analyze the parameters of structures. Together with the thoughts of simplification and grouping, optimization theory can reveal the relationship between organism structure and engineering structure, providing a way to structural bionic design. A general evaluation criterion is proposed in Step 4, which is feasible to evaluate the performance of different structures. Finally, based on the method, a structural bionic design of thin-walled cylindrical shell is introduced.
基金supported by the National Key R&D Program of China (Grant No.2019YFE0126300)the Natural Science Foundation of Guangdong Province,China (Grant Nos.2019A1515011530 and 2021B1515020087).
文摘Surgical electrodes rely on thermal effect of high-frequency current and are a widely used medical tool for cutting and coagulating biological tissue.However,tissue adhesion on the electrode surface and thermal injury to adjacent tissue are serious problems in surgery that can affect cutting performance.A bionic microstriped structure mimicking a banana leaf was constructed on the electrode via nanosecond laser surface texturing,followed by silanization treatment,to enhance lyophobicity.The effect of initial,simple grid-textured,and bionic electrodes with different wettabilities on tissue adhesion and thermal injury were investigated using horizontal and vertical cutting modes.Results showed that the bionic electrode with high lyophobicity can effectively reduce tissue adhesion mass and thermal injury depth/area compared with the initial electrode.The formation mechanism of adhered tissue was discussed in terms of morphological features,and the potential mechanism for antiadhesion and heat dissipation of the bionic electrode was revealed.Furthermore,we evaluated the influence of groove depth on tissue adhesion and thermal injury and then verified the antiadhesion stability of the bionic electrode.This study demonstrates a promising approach for improving the cutting performance of surgical electrodes.
基金financially sponsored by the National Key Research and Development Program of China(2018YFA0703000)the National Natural Science Foundation of China(No.U1909218)+2 种基金the Joint Funds of Guangdong Basic and Applied Basic Research Foundation(2019A1515110261)the Special Projects in Key Fields from the Department of Education of Guangdong Province(2022ZDZX2059)the Dongguan Science and Technology of Social Development Program(20221800905072)。
文摘Because of the complex nerve anatomy and limited regeneration ability of natural tissue,the current treatment effect for long-distance peripheral nerve regeneration and spinal cord injury(SCI)repair is not satisfactory.As an alternative method,tissue engineering is a promising method to regenerate peripheral nerve and spinal cord,and can provide structures and functions similar to natural tissues through scaffold materials and seed cells.Recently,the rapid development of 3D printing technology enables researchers to create novel 3D constructs with sophisticated structures and diverse functions to achieve high bionics of structures and functions.In this review,we first outlined the anatomy of peripheral nerve and spinal cord,as well as the current treatment strategies for the peripheral nerve injury and SCI in clinical.After that,the design considerations of peripheral nerve and spinal cord tissue engineering were discussed,and various 3D printing technologies applicable to neural tissue engineering were elaborated,including inkjet,extrusion-based,stereolithography,projection-based,and emerging printing technologies.Finally,we focused on the application of 3D printing technology in peripheral nerve regeneration and spinal cord repair,as well as the challenges and prospects in this research field.
基金supported by Yangtze River Delta HIT Robot Technology Research Institute(No.HIT-CXY-CMP2-VSEA-21-01)the Open Project Program(No.WDZL-202103)。
文摘This paper proposes a quasi-zero stiffness(QZS)isolator composed of a curved beam(as spider foot)and a linear spring(as spider muscle)inspired by the precise capturing ability of spiders in vibrating environments.The curved beam is simplified as an inclined horizontal spring,and a static analysis is carried out to explore the effects of different structural parameters on the stiffness performance of the QZS isolator.The finite element simulation analysis verifies that the QZS isolator can significantly reduce the first-order natural frequency under the load in the QZS region.The harmonic balance method(HBM)is used to explore the effects of the excitation amplitude,damping ratio,and stiffness coefficient on the system’s amplitude-frequency response and transmissibility performance,and the accuracy of the analytical results is verified by the fourth-order Runge-Kutta integral method(RK-4).The experimental data of the QZS isolator prototype are fitted to a ninth-degree polynomial,and the RK-4 can theoretically predict the experimental results.The experimental results show that the QZS isolator has a lower initial isolation frequency and a wider isolation frequency bandwidth than the equivalent linear isolator.The frequency sweep test of prototypes with different harmonic excitation amplitudes shows that the initial isolation frequency of the QZS isolator is 3 Hz,and it can isolate 90%of the excitation signal at 7 Hz.The proposed biomimetic spider-like QZS isolator has high application prospects and can provide a reference for optimizing low-frequency or ultra-low-frequency isolators.
基金Supported by National Key R&D Program of China(Grant No.2022YFE0138500)National Natural Science Foundation of China(Grant No.51975246)+2 种基金Science and Technology Development Program of Jilin Province of China(Grant No.20220101192JC)Capital Construction Fund Plan within the Budget of Jilin Province of China(Grant No.2023C041-4)Chongqing Municipal Natural Science Foundation of China(Grant No.CSTB2022NSCQ-MSX0225).
文摘With the deepening of human research on deep space exploration,our research on the soft landing methods of landers has gradually deepened.Adding a buffer and energy-absorbing structure to the leg structure of the lander has become an effective design solution.Based on the energy-absorbing structure of the leg of the interstellar lander,this paper studies the appearance characteristics of the predatory feet of the Odontodactylus scyllarus.The predatory feet of the Odontodactylus scyllarus can not only hit the prey highly when preying,but also can easily withstand the huge counter-impact force.The predatory feet structure of the Odontodactylus scyllarus,like a symmetrical cone,shows excellent rigidity and energy absorption capacity.Inspired by this discovery,we used SLM technology to design and manufacture two nickel-titanium samples,which respectively show high elasticity,shape memory,and get better energy absorption capacity.This research provides an effective way to design and manufacture high-mechanical energy-absorbing buffer structures using bionic 3D printing technology and nickel-titanium alloys.
文摘Bionic surface structures, inspired by the flora, were developed for Sheet-Bulk Metal Forming (SBMF) in order to locally control the friction condition by adjusting the wetting behavior. Five bionic structures were micromilled on ASP 2023 in annealed as well as hardened and tempered conditions. Subsequently, the structured surfaces were plasma-nitrided and coated with a CrA1N thin film. The influence of the treatment method on the structural geometry was investigated with the aid of a scanning electron microscope and 3D-profilometer. The wetting behaviors of water and deep drawing oil (Berufluid ST6007) on bionic surfaces were evaluated using contact angle measurements. The resulting micro-milled structures exhibit an almost identical shape as their bionic models. However, the roughness of the structured surfaces is influenced by the microstructure. The combination of plasma-nitriding and Physical Vapor Deposition (PVD) leads to an increase in roughness. All bionic struc- tures possess higher contact angles than that of the unstructured surfaces when wetted by water. This can be explained by the fact that the structural elevations block the spreading. When the bionic surfaces are wetted by deep drawing oil, the lubricant spreads in the structural cavities, leading to smaller contact angles. Furthermore, the anisotropy of the structure has an influence on the wetting behavior.
基金Tile authors gratefully acknowledge the support of the National Natural Science Foundation of China (Grant No.31071928), NSFC Projects of Joint fund of high-speed Train Basic Research (Grant No. U1134109), NSFC Projects of International Cooperation and Exchanges (Grant No. 50920105504), and the Youth Research Foundation of the Jilin University Agronomy Faculty (Grant No. 4305050102k7).
文摘Flow control can effectively reduce the aerodynamic noise radiated from a circular cylinder. As one of the flow control methods, a bionic method, inspired by the serrations at the leading edge of owls' wing, was proposed in this paper. The effects of bionic serrated structures arranged on the upper and lower sides of a cylinder on the aerodynamic and aeroacoustic performance of the cylinder were numerically investigated. At a free stream speed of 24.5 m.s-1, corresponding to Reynolds number of 1.58 × 10^4, the simulation results indicate that the bionic serrated structures can decrease the frequency of the vortex shedding and control the fluctuating aerodynamic force acting on the cylinder, thus reduce the aerodynamic noise. A qualitative view of the vorticity in the wake of the cylinder suggest that the serrated structures reduce aerodynamic sound by suppressing the unsteady motion of vortices.
基金supported by the National Natural Science Foundation of China(No.11972158)the Postgraduate Scientific Research Innovation Project of Hunan Province(No.CX20221044)the Military Commission Science and Technology Committee Basic Strengthening Program Technology Fund(No.2020-JCJQ-JJ-356)and(No.2019-JCJQ-JJ-150).
文摘Using an electron microscope to observe the microstructure of a porcupine quills cross-section and a bionic method,a new bionic structure was proposed.The performance of the structure in terms of energy absorption,maximum impact force withstood,and impact force efficiency was evaluated using Ansys finite element simulation software to simulate the structure's impact.To examine the impact of ribs on the structural performance of the bionic porcupine quills,a control structure was developed.According to the results of the finite element simulation,the presence of ribs in the Bionic porcupine quills structure can transfer stress uniformly to the overall structure and share stress for some of the rupture-prone regions.Ribs reduce stress concentration in specific areas and increase the impact force efficiency of the structure.The SEA and IFE values of bionic porcupine quills were 30.01 kJ/kg and 84.22%,respectively.The structure is then optimized for parameter design in order to find the optimal structure by response surface in order to improve the structure's SEA and decrease its MIF.In order to evaluate the precision of the response surface,the optimal structure predicted is validated using finite element simulation.
基金This work was supported by the National Key Research and Development Program of China(No.2020YFB2009100)the Natural Science Basic Research Program of Shaanxi(No.2022JQ-508)+2 种基金the National Science and Technology Major Project(No.J2019-V-0006-0100)the Open research fund of SKLMS(No.sklms2021009)Zhaojun Liu received the China Scholarship Council Fund(No.202206280155)for his research stay at National University of Singapore.
文摘For the large amount of waste heat wasted in daily life and industrial production,we propose a new type of flexible thermoelectric generators(F-TEGs)which can be used as a large area bionic skin to achieve energy harvesting of thermal energy.With reference to biological structures such as pinecone,succulent,and feathers,we have designed and fabricated a biomimetic flexible TEG that can be applied in a wide temperature range which has the highest temperature energy harvesting capability currently.The laminated free structure of the bionic F-TEG dramatically increases the efficiency and density of energy harvesting.The F-TEGs(single TEG only 101.2 mg in weight),without an additional heat sink,demonstrates the highest output voltage density of 286.1 mV/cm^(2)and the maximum power density is 66.5 mW/m^(2) at a temperature difference of nearly 1000℃.The flexible characteristics of F-TEGs make it possible to collect the diffused thermal energy by flexible attachment to the outer walls of high-temperature pipes and vessels of different diameters and shapes.This work shows a new design and application concept for flexible thermal energy collectors,which fills the gap of flexible energy harvesting in high-temperature environment.
基金supported by the National Natural Science Foundation of China(Grant Nos.12022213,12002329,and 12272240).
文摘This study addresses the modified bionic vibration isolation technology by introducing the electromagnetic system to simulate biological damping characteristics.It has been proven effective in improving the vibration environment.By assuming the spacecraft-adapter system as a two-degree-of-freedom system,an excellent simplified model can be derived.The novel bionic vibration isolation device(ABVS-EMVI),which combines an active bionic variable-stiffness device(ABVSVI)with the electromagnetic system,is proposed for the purpose of isolating vibration and harvesting energy at the same time.The dynamic equations of the spacecraft-adapter system with ABVS-EMVI are obtained using the Taylor expansion within the framework of the Lagrange equation,and the harmonic balance method is introduced to acquire the amplitude and voltage response of the system.The results indicate that the electromagnetic system can enhance the vibration isolation performance and provide energy harvesting capabilities.After confirming the ability of ABVS-EMVI to deal with different forms and amplitudes of excitation,the performance of vibration isolation and energy harvesting is investigated in terms of various parameters,and several new conclusions have been drawn.
基金supported by the National Natural Science Foundation of China[Grant No.52175377]the National Science and Technology Major Project[Grant No.2017-VII-0002-0095]the Graduate Scientific Research and Innovation Foundation of Chongqing[Grant No.CYB22009].
文摘A new process for the fabrication of sharkskin bionic structures on metal surfaces is proposed.The sharkskin bionic surface was successfully machined on the surface of IN718 by laser sequencing of the abrasive belt surface,laser processing of the layered scale-like structure,and ribbed texture grinding.The flexible contact properties of belt grinding allow ribbed structures to be machined uniformly on a hierarchical,scale-like microstructure.Sharkskin bionic microstructures with radii greater than 75µm were prepared after parameter optimisation.The influence of processing parameters on the geometrical accuracy of the microstructure was investigated,the microstructure microform and elemental distribution were analyzed,and the relationship between the ribbed microstructure and chemical properties of the surface of the bionic sharkskin on wettability was revealed.The results indicate that reducing the laser power and increasing the laser scan rate can reduce the laser thermal effect and improve the microstructure processing accuracy.The laser ablation process is accompanied by a violent chemical reaction that introduces a large amount of oxygen and carbon elements and infiltrates them at a certain depth.The wettability of the surface undergoes a transition from hydrophilic(contact angle 69.72°)to hydrophobic(contact angle 131.56°)due to the adsorption of C-C/C-H and the reduction of C=O/O=C-O during the placement process.The ribbed microstructure changes the solid-liquid contact on the surface into a solid-liquid-gas contact,which has an enhanced effect on hydrophobicity.This study is a valuable guide to the processing of hydrophobic layered bionic microstructures.
基金supported in part by the National Nature Science Foundation of China[No.62073229]Jiangsu Policy Guidance Program(International Science and Technology Cooperation)The Belt and Road Initiative Innovative Cooperation Projects(No.BZ2021016)EDL fund of Beijing Institute of Space Mechanics and Electricity(Grant No.EDL19092127).
文摘With the increasing size of space facilities,on-orbit assembly requires robots to move on different heights of trusses.This paper proposes a bio-inspired attachment mechanism for robot feet to enable climbing on different heights of trusses.Inspired by the attachment and grasping abilities of Dynastes Hercules,we utilize its foot microstructures,such as microhooks and setae,to achieve efficient contact and firm grip with the surface.The morphology and arrangement of these structures can inspire the design of robot feet to improve their grasping and stability performance.We study the biological structure of Dynastes Hercules,design and optimize the bio-inspired structure,analyze the influence of various factors from theoretical and experimental perspectives,and verify the feasibility of the scheme through simulation.We propose an ideal climbing strategy that provides useful reference for robot applications in practice.Moreover,the influence laws of various factors in this paper can be applied to robot foot design to improve their operation ability and stability performance in the space environment.This bio-inspired mechanism can improve robot working range and efficiency,which is critical for on-orbit assemblyin space.
基金National Natural Science Foundation of China,Grant/Award Number:52305311,52205306,1935001,51725501,212T1003,aNatural Science Foundation of Shandong Province,Grant/Award Number:ZR2023QE018。
文摘For high-speed moving objects,drag reduction has been a prolonged major challenge.To address this problem,passive and negative strategies have been proposed in the preceding decades.The integration of creatures and nature has been continuously perfected during biological evolution.Unique structure characteristics,material properties,and special functions of marine organisms can provide inexhaustible inspirations to solve this intractable problem of drag reduction.Therefore,a simple and low-cost laser ablation method was proposed.A multi-scale and multi-level riblet(MSLR)surface inspired by the denticles of the sharkskin was fabricated by controlling the density of the laser path and ablation times.The morphology and topographic features were characterised using an electron microscope and a scanning white-light interfering profilometer.Then,the drag reduction capacity of the bionic riblet surface was measured in a circulating water tunnel.Finally,the mechanism of drag reduction was analysed by the computational fluid dynamics(CFD)method.The results show that the MSLR surface has a stable drag reduction capacity with an increase in Reynold(Re)number which was contributed by high-low velocity stripes formed on the MSLR surface.This study can provide a reference for fabricating spatial riblets with efficient drag reduction at different values of Re and improving marine antifouling.
基金supported by the National Natural Science Foundation of China(Grants 11832009 and 11672104)the Chair Professor of Lotus Scholars Program in Hunan province(Grants XJT2015408)。
文摘Vibration reduction has always been one of hot and important topics in mechanical engineering,especially for the special measurement instrument.In this paper,a novel limb-inspired bionic structure is proposed to generate negative stiffness and design a new quasi-zero stiffness isolator via torsion springs,distinguishing from the existing tension spring structures in the literature.The nonlinear mathematical model of the proposed structure is developed and the corresponding dynamic properties are further investigated by using the Harmonic Balance method and ADAMS verification.To evaluate the vibration isolation performance,typical three-springs quasi-zero stiffness(TS QZS)system is selected to compare with the proposed bionic structure.And the graphical processing unit(GPU)parallel technology is applied to perform necessary two-parameter analyses,providing more insights into the effects of parameters on the transmissibility.It is shown that the proposed structure can show advantages over the typical TS QZS system in a wider vibration isolation range for harmonic excitation case and shorter decay time for the impact excitation case.
基金supported by the National Natural Science Foundation of China (Grant No. 50975012)the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091102110022)
文摘High-speed machine tool working table restrains the machining accuracy and machining efficiency,so lightweight design of the table is an important issue.In nature,leaf has developed a plate structure that maximizes the surface-to-volume ratio.It can be seen as a plate structure stiffened by veins.Compared with a high-speed machine tool working table,leaf veins play a role of supporting part which is similar to that of stiffening ribs,and they can provide some new design ideas for lightweight design of the table.In this paper,distribution rules of leaf veins were investigated,and a structural bionic design for the table was achieved based on regulation of leaf veins.First,statistical analysis on geometric structure of leaf veins was carried out,and four distribution rules were obtained.Then,relevant mechanical models were developed and analyzed in finite element software.Based on the results from mechanical analysis on those relevant models,the four distribution rules were translated into the design rules and a structural bionic design for the working table was achieved.Both simulation and experimental verifications were carried out,and results showed that the average displacement of the working table was reduced by about 33.9%.